International Conference on Ecology, Ecosystems & Conservation Biology

In-vitro cereus Muhammad H Rasool Abuzar M Afzal Bacillus

Heavy metal contamination is a major global environmental issue and industrial e uents are commonly used for irrigation. Increasing industrial rate in the modern world is responsible for the increase in the concentration of these heavy metals. e present study was designed to isolate and evaluate some indigenous heavy metal tolerant bacteria from textile e uents of Faisalabad Pakistan. Out of 30 positive samples, two isolates were selected showing maximum tolerable concentration and multi-metal resistance to Ni and Co and were named AMIC2 and AMIC3. Molecular characterization con rmed AMIC2 as (, accession number LT838345) and AMIC3 as (, LT838346). Biosorptive potential was accessed using Inductively Coupled Plasma-Optical Emission Spectroscopy and it was found that AMIC2 reduced Ni (48.4%, 49%) and Co (70.6%, 73.6%) a er 24 and 48 hours respectively whereas AMIC3 reduced Ni (50.6%, 51.8%) and Co (71.8%, 73.2%) a er 24 and 48 hours respectively. Fourier transform infrared spectroscopy was used to analyze the functional groups and overall nature of