Keywords:
 Image: Second s

				ē.					
	X	X.,.	🕅 .	.,	, , , ,		. ، , ,	XX	Χ.
	. , , X	X . X	1 🛍), 🛛		. ,			X., X	, 📓 .
		. 🕅		X .			X, X,	3	. 📓 .
, 🕅 , .	· · · , · ,	·, · ,	··· , ,	. 📓	🕅 ,	📓		•	🛙
· ·, ·, ,	,• <i>·</i>				X	,,	. (H) 🖪	9,20,
			.,, (H.	A)	₽1,22	, A ,	📓		
,, .	(AD) 🕰 3,2	4 🕅 .	X	· , ,	X ,	,, .	₽5,26	
	, 📓.,	. 🛛 .	Ø. ,,			, , . 🕅 .	,, .	, 🛛 . , 🗍	1
	, , , 🕅 ,	,, e .			🛛	88.	, 📓 ,	., ž 🖻 7	-33.
H	, .,						. 🛛		
	88.	X . X			.,, .	🔊		🕅 .	X .
X	🕅	. 📓 .			🕅		🕅,	🕅	
×. •	. 🕅 🕅	, .	X			B 47.			, ,
	. 🕅	., ., .		. 🛛			X.X.		
	X	🕅	. 🛯 . 🕯	1.	., 🕅	, .	X	🕅 .	., , , ,
. 🛛 🖉	6 × 5 5	8	1	, <i>.</i> .				, ,,	

Mathematical Formulation of the Boundary Value Problem

· · · · · · · · · · · · · · · · · · ·	, , , , , 🛍,		. , ., . , 📓 .
	. ,,,	.,,, ., .	. 🛯 7 . F 1
· ·, , ··, ·· · · · ·, , , · · 📓,	رز ندر ۲۰۰۰ زرمان	,,	🛿 J 🗖 🖓 🖉 🖓 🖬 🖓 🖬
,,,, , , ,, ,, ,, . . , ,	🏼 , , ,	, , , , , , ,	$CH_4 \square C_2$
	, , , 🕅 Da	· 🔊 🖌	. 🛛 . , 🖾 , , , , ,
	, . 📓 .,	, . ,	د . د ر د ر رد . د
به ارز الاند ارزایین از به مارمان		1, 20, 2020	مانه رزانهر ۲۰ رم
. 📓 🗉 📓		: 🕅 📓 🖓	🛛 🛍 , , , , 🖬
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, . 🛛 . 🕅	·, ·, ·, ·	,, 🖬 . , .
	🛯 , , ,	., 🛙	., CH ₄
	X , , , , ,	🔊 🕯	1 🗐 - 1, 1, 1 📓
, $CH_4 \square C = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	B 7:		

$$D_{CH_{4}} \frac{d^{2} S_{CH_{4}}}{dx^{2}} - \sigma \left(S_{CH_{4}}, T \right) = 0, \tag{1}$$

$$D_{co2} \frac{d^2 S_{co_2}}{dx^2} - \sigma \left(S_{cn_4}, T \right) = 0,$$
 (2)

· . , · , · 🚨 , , · , · , , . 🛍 . :

$$S_{CH_{4}}(0,z) = \frac{C_{CH_{4}}(z)}{H_{CH_{4}}(T)}, \ \frac{dS_{CH_{4}}(z)}{dx} = 0 \ \text{ for } 0 < x < \ , 0 < z \ \pounds \ H$$
(3)

$$S_{_{CO_{2}}}(0,z) = \frac{C_{_{CO_{2}}}(z)}{H_{_{CO_{2}}}(T)}, \frac{dS_{_{CO_{2}}}(z,z)}{dx} = 0 \text{ for } 0 < x < , 0 < z \pounds H$$
(4)

$$S_{CO_2}(z, x) = -B(z)x^2 + 2B(z)x + \frac{C_{CO_2}(z)}{H_{CO_2}(T)}$$
 (13)

$$B(z) = \frac{-CO_{2}/CH_{4}}{2} \frac{X_{b}k(T)}{K_{cH_{4}}(T)} \frac{C_{CH_{4}}(z)}{H_{CH_{4}}(T)}$$
(14)

$$\mathbf{D}_{\mathbf{CO}_{2}} \mathbf{\mathbf{E}}_{\mathbf{m}}^{\mathbf{CO}_{4}} + \frac{\mathbf{CO}_{4}(T)}{\mathbf{H}_{\mathbf{CH}_{4}}(T)} \mathbf{\dot{\Xi}}$$

$$C_{CH_{*}}(z) = C_{CH_{*,n}} - \exp \left\{ \frac{\frac{\partial}{\partial z}}{u_{g}} \frac{A \sqrt{D_{CH_{*}}} P \tanh P}{u_{g} H(T)} - z \frac{\ddot{Q}}{a} \right\}$$
(15)

	X X,,		38-3 . F.	درد
	X X	, , <u>,</u>	🕅	. 📓
🛛 🖾	Κ		🛛	. 🕅
· · · · · · · · · · · · · · · · · · ·	A 📓	,	1 . 1).	
E, X, (15) X,	(16) 📓	. , . ,	. , . , 📓	
X, X, X. X, X, X	. 🛛	, , , ,	🛛	, , ,
	X., X.	X ,	🏼	, , , , ,
	📓 .	X. X		
F F ,		X X		
	. A 🖬	🕅		. 🖬 . K
A,	🕅			
· · · · · · · · · · · · · · · · · · ·		, . 🖬 . 📓		
., ., 🛍 🛍 ,	. 🛛 . , , , 🕅 .	. 📓		
X		2	X	

A=250 A = 750

(a)

Concentrations of the Carbon dioxide in biofIm phase versus coordinate of biofIm depth for different values of the parameters using Eqn.(13).

(b)

7. Biazar J, Babolian E, Islam R (2004) Solution of the system of ordinary differential equations by Adomian decomposition method. Applied Mathematics

- He JH (1999) Homotopy perturbation technique. Computer Methods in Applied Mechanics and Engineering 178: 257-262.
- 20. He JH (2005) Application of homotopy perturbation method to nonlinear wave equations. Chaos, Solitons and Fractals 26: 695-700.
- 21. Liao SJ (1992) PhD Thesis. Shanghai Jiao Tong University, Shanghai, People's Republic of China.
- 22. Liao SJ (2012) Homotopy analysis method in nonlinear differential equations. Springer: Berlin, Germany.
- Adomian G (1991) A review of the decomposition method and some recent results for nonlinear equations. Computational Mathematics and Application 21: 101-127.
- 24. Adomian G, Rach R (1993) Analytic solution of nonlinear boundary-value problems in several dimensions by decomposition. Journal of Mathematical Analysis and Applications 174: 118-137.
- Ramos J (2009) Picard's iterative method for nonlinear advection-reactiondiffusion equations. Applied Mathematics and Computation 215: 1526-1536.
- 26. Szinvelski CR, Vilhena MT, Carvalho JC, Degrazia GA (2006) Semi- analytical solution of asymptotic langevin equation by the Picard's iterative method. Environmental Modeling and Software 21: 406-410.
- Rajendran L, Anitha S (2013) Reply to comments on analytical solution of amperometric enzymatic reactions based on Homotopy perturbation method by Ji-Huan He, Lu-Feng Mo. Electrochimica Acta 102: 474-476.

- Meena V, Indira K, Kumar S, Rajendran L (2014) A new mathematical model for effectiveness factors in biofIm under toxic conditions. Alexandria Engineering Journal 53: 917-928.
- Meena V, Praveen T, Rajendran L (2016) Mathematical modeling and analysis of the mole concentrations of ethanol, acetaldehyde and ethyl acetate inside the catalyst particle. Kinetics and Catalysis 57: 125-134.
- Meena V, Rajendran L (2016) Mathematical modeling of gas phase and biofIm phase biofIter performance. Egyptian Journal of Basic and Applied Sciences 3: 94-105.
- Meena V, Kirthiga OM, Rajendran L (2014) Analytical expression of concentration of substrate in bioflm reactor using Adomian decomposition method. Analytical & Bioanalytical Electro Chemistry 6: 713-732.
- 32. Kirthiga OM, Rajendran L (2014) Analytical expressions of the concentrations of substrate, biomass, and ethanol for solid-state fermentation in biofuel production. Energy Technology 2: 574-578.
- 33. Kirthiga OM, Rajendran L (2016) Analytical expression pertaining to the concentrations of biomass, sugar and ethanol production from wastewaters of the soft drink industries. International Journal of Modern Mathematical Sciences 4: 352-364.
- Biazar J, Eslami M (2011) A new homotopy perturbation method for solving systems of partial differential equations. Computers & Mathematics with Applications 62: 225-234.
- 35. Rabbani M (2013) New homotopy perturbation method to solve nonlinear problems. Journal of Mathematics and Computer Science 7: 272-275.