Review Article

Open Access

Comparison of Anthropometric and Body Composition Outcomes betw Laparoscopic Roux-en-Y Gastric Bypass and Sleeve Gastrectomy: A Narrative Review

Terry Brown*, Kimberly Gottesman, Melanie Newkirk and Jane Ziegler

Department of Clinical and Preventive Nutrition Sciences, Rutgers School of Health Professions, Newark, New Jersey 07107

Abstract

Bariatric surgery is a well-accepted treatment option for sustained weight loss and improvement in comorbid conditions; however, it is unclear which procedure (laparoscopic Roux-en-Y gastric bypass [LRYGB] or sleeve *æ•cl^&c[{ \dŽŠUÕábl@æ•Ac@^A * !^æc^•cl^ ^&cl [\dæ}c@! [] [{ ^cl3&læ}åd`a[å \delta [{] [•ici] } L [`c&[{ ^•El dclå•Ai }] [!cæ}chc[A æ•&^lcæi}A @i&@Aàæliæcl3&A] ! [&^a` !^Ai•A { [•cl^ ^&cig^Aæd { æ¢i { à :à } *Å^¢&^••A ^ ^à*@ch [[•eAæ}Åå^c^' { à }à } *Å] @iceAà ! [& a^chae A * [Ae@edi]] [*a*chae A * [Ae@edi]] *A * [*a*chae A * [Ae@edi] *A * [*a*chae A *] *A *]

Author, Year, Study Design, Country, Funding Source	Quality Grade (+, -, Ø)	Study Purpose	Study Population (Demographics)	Intervention and Setting	Outcome Data	Conclusions/ Results	Limitations Findings
Venancio FA, Almeida LA, et al. ²⁴ Year: 2021 Study Design: Prospective Cross sectional Class Rating: D Country:kÓlæ:il Funding Source: Espirito Santo Research and Innovation Support grant and a partial scholarship	Ø	To explore outcomes for patients with obesity who underwent LRYGB compared to LSG at 6-months postoperative.	N = a convenience sample of 39 adults who underwent bariatric surgery. Aged 18 to 60 years old. BMI > 40 kg/ m ² <u>or</u> > 35 kg/m ² plus co- morbidities and psychological testing. Exclusion criteria included pregnancy, pacemaker users, and subjects with metal implants. <u>Demographics</u> Mean Age (years) LRYGB: 41.2±7.8 LSG: 42.9±5.3 Sex (n M/F) LRYGB: 5/20 LSG:2/12				

Kavanagh R, Smith J, et al. ¹⁹ Year: 2020 Study Design: Prospective Cohort Study Class Rating: B Country: Iowa City, Iowa Funding Source: Medtronic Surgical Innovations External Research Program grant	To examine body composition changes after LSG compared to LRYGB at 12-months postoperative.	N = 63 adult patients who underwent bariatric surgery in January 2015 to August q h8ye0 1 Tf(2020)TjTjET0 0 0	SCN0.513 w hey hot	சுயதுபst	

Kim G, Tan CS, et al. ²⁰				
Year: 2019 Study Design: Retrospective				
Cohort Study/ Secondary				
Analysis Class Rating: B				
Singapore Funding				
Source: None p.				

Otto M, Elrefai	ø	To compare the	N = 173 adult patients who	Intervention:	Anthropometrics	RYGB and LSG	Strengths
M, et al.22		^ ^&c∙Á[~ÁŠÙÕÁæ}å	underwent bariatric surgery	Subjects underwent	Mean Weight kg (1 year)	have comparable	1. Prospective
Year: 2016		LRYGB on body	in January 2007 to February	bariatric surgery of	LYRGB: 90.6±18.3	results for %	2. ANCOVA to
Study Design:		composition post	2012. Met guidelines for	either a	LSG: 112.4±23.5	EWL and body	for selection bia
Prospective		adjustment for	bariatric surgery - BMI > 40	n =127 LRYGB <u>or</u>	% TWL (1 year)	composition	3. W•^åŦ^&[* }å:
Cohort Study		BMI at 1 year.	kg/m² orůÅHÍÅ\ *Ð { ² plus co-	n = 46 LSG	LRYGB: 31.7±8.4%	measures at	German guidelines
Class Rating: B			morbidities.	Patients with a BMI >	LSG: 30.48±7.6, P > 0.4	1-year post-	for bariatric surgery
Country:			Demographics	60 kg/m2 or previous	Mean % EWL (1 year)	bariatric surgery	4. Routine nutrition
Germany			Age: N/A	small bowel surgeries	LRYGB: 62.9±18	after adjustment	counseling by
Funding			Sex (n M/F)	_^!^A[_^!^åAc@^A	LSG: 52.3±15.0, P =	for baseline	bariatric specialist
Source: None			LRYGB: 34/93	LSG.	0.0024	BMI. % TWL	5. 98% follow-
			LSG: 17/29	Surgical Technique	Mean BMI kg/m ² (1 year)	did not require	up rate at 1 year
			Anthropometrics	LRYGB: 150-cm	LRYGB: 31.4±5.4	adjustments for	postoperative
			Mean Weight (kg)	Roux-en-Y limb and	LSG: 38.2±6.6	variability in BMI	
			LRYGB: 129.8±22	50-cm BP limb	Body Composition	between the two	Limitations
			LSG: 163.9±29.4	LSG: used a 42-Fr	Mean LM kg (1 year)	groups; therefore,	1.U { æ A•æ {] ^A•à: ^E/
			Mean BMI (kg/m ²)	bougie	LRYGB: 61.7±12	it may be a better	}[}E¦æ}å[{i:^åA
			LRYGB: 45.6±5.7	Anthropometric and	LSG: 68.8 ± 13.7 , $P = 0.33$	tool than % EWL.	study
			LSG: 55.9±7.8	Body Composition	Mean % Body Fat (1		2.Single center
			Body Composition	Nutriguard-M	year)		study
			Mean LM (kg)	BIA (Data input	LRYGB: 30.5±9.7		3.Short-term study
			LRYGB: 71.4±15.9	GmbH, Darmstadt,	LSG: 37.1 ± 9.2 , $P = 0.01$		4.Selection bias
			LSG: 83.5±20.5	Germany) was used	(After BMI adjustment,		since subjects were
			Mean % Body Fat	to assess weight and	% EWL (P = 0.86), LM		}[c4:æ}å[{:^åA
			LRYGB: 46±7.5	body composition	(P = 0.92), and % Body		5.Only included
			LSG: 49.2±7.7	measurements.	Fat $(P = 0.16)$ were not		study participants'
			Attrition rate: 26.6% (only	Diet and Exercise			data that came
			included if subjects showed up	Patients received			to all 6 follow-up
			at all follow-up appointments.)	nutrition counseling			appointments
				by a bariatric			(73.4%)
				specialist at each			6.Used BIA to
				outpatient visit.			assess body
				Encouraged			composition
				participants to			
				begin an active			variables, i.e., diet
				exercise regimen			and exercise not
				and consume 1.5 g			controlled for
				protein per kg IBVV.			
				Fiotein supplements			
				for potiopto that were			
				doomod to bo protoin			
				ar, our ju			
				Second: Germany			

6c d a d % EWL d с 66 6 a [17-22,24,27]. Gé a a d a. a d a. [20], a d O 🌢 a. [22], a [18], Ka a a a. [19], K 66 c a d с 🜢 baac а c % EWL a d b 6 d c 6 €ad€d€ cad 6 ad 6 а a BMI ad а .Ia cédaaa а (N = 295)6 daaa ad c ca а бb , K a. [20] 6 d a % d ba a c а LRYGB 6 c6 a d 6 LSG 6 a EWL a 6 (77.5 30.4% . 71.8 30.5%), 6 (77.3 37.2% . 66.8 46.6%) a (67.7 32.5% .64.3 37.8%) **6 6** a ; **6** a d ca (P > 0.05) [20]. d b K 6 а. d b Kaaa a.[19] (N=63) a dO 6 [20] c6 a. [22] (N = 173) a a **6 6** d a LRYGB d a % EWL cé a déLSG aé a,b d 6 Gé aad а. d b [18] (N = 43) a **6** d LSG % EWL a 6 LRYGB 🛛 **6** 66 a.Sdaca Gé aa d d 6 d da LSG a. [18] с а 6 d da a ad 6 ba . Edc а adBMIa a locad % EWL ba а а 6 c6 d é a LRYGB cé a déLSG [28]. % EWL b Kaaa a. [19], O **é** a. [22], a dG**é** a a d ca ; 6, a.[18] 6 a ca a c 6d LRYGB cac 🌔 a с а

% EWL cé a d é LSG. Accé d 6 ASMBS, % EWL 6 cdéba é a 60% a a d 77% a 12 🧉 6 a [29]. I , % EWL 🖌 daca c d a ab 🛛 🛛 🖉 6 a LRYGB K a.[20] a cé a d LSG a 6 a 6 6 a (77.5 30.4% . 71.8 30.5%) a.¹⁹ (53.4% .47.2%, P = 0.165) a d O **6** d b Kaaa a.²² (62.9% . 52.3 15.0%, P = 0.86 a BMI ad) a 🖌 a a d Gé a a d a. [18] (52.3 13.4% . 66.4 23.8%, P > 0.05) 6 66 c d % EWL 6 c6 a b **é** [19,20,22]. A a **6 6** Κ daca a.[20](87%) a d **6** 47% **6** a d O é a. [22] (73%) d LRYGB cé daca Ka a a a.[19] a d 51% G**é** a a da. [18]. A **6**, LRYGB **6** ad R**6** - -Yadb **6** ac ac b a a d é 100 é 150 c a d 50 é 100 c , с [18-20,22]. D c ba a c 🌢 а c, cd а с ,c**é** da **é** b a 6c ada a с a 6 с b ca 6 a a ab 🛛 66d c6 [30]. daca 6 a d ab 6 ca ac

Rс d a ca d**é** b **é** % EWL b a **b**ac 6 6 6 сб ba a c a a а [31,32]. C**é** c a.[32] c d c d a 12- 6 с d 6 а b **6** c**6** а 6 a 6 2,420 US a d ca d ba a c . d a % TWL 6 6 6% EWL c c d a а а с

Schneider J, Peterli R, et al ²³				
Year: 2016				

> 17.6%, P = 0.016) a baac . [21] A Ma a a. [21] \bullet dad c 6 a a 🌢 % EBMIL b ébaacécd cédbadé cad ba d $\mathbf{6}$ a c a a BMI (P = 0.006) LSG 6 c6 (P = 0.003)d dc cé a c . Mé é , % EBMIL é é бb LRYGB a \bullet a (58.7% . 40.9%, P = 0.015), a a **6** a (62.8%, .43.0%, P = 0.033) a (60.2% .35.1%, P = 0.031), a d a (56.7% . 16.9%, P = 0.013) **6 6** a cé a dé LSG c 6 a [21]. b Ma a a. [21] a cé Sc d a. [23] (N = 43) é é d % EBMIL a a LRYGB cé a d é LSG é $(76.4 \ 22.2\% \ .64.4 \ 24.2\%, P < 0.046)$ 6 a 66 a (**6**b

6 a BMI [32]. % TWL d da d c b а ad **66** a aa **6666** [25]. a d a d , 6 6 ba d T 6 % TWL [17,20,22]. S d a c a K a. [20] ad a % TWL 6 26.1 7.7% LRYGB 6 c6 a d 6 26.3 9.8% a **é**-**é** a ; c**é** , LSG **6** (P > 0.05) a **6** c d d O **é** a.[22] c d a % TWL 🌢 31.7 8.4% LRYGB **6 c6** a d **6** 30.48 6.7% LSG **6** (P > 0.4). a.[20]a 🌢 🌢 da% TWL a daba 🔞 a Κ a (LRGB 25.7 9.5 . LSG 26.9 17.3%, *P* > 0.5), b a 6 a 🌢 da a 💪 ba (LRYGB 23.7 10.1% . LSG 23.9 11.1, P > 0.05; 6 a ca ca.W K a.[20] a d O 🌢 a.[22] 6 d 6 ad cc б,В a.[17] LRYGB a d LSG c a 6 d a b**é** 6 6 a 6 6 a . N6 6 % TWL 6 a K a., [20] O 🌢 a., [22] 🙆 B a.[17] ca b LRYGB cé a déLSG. a ca

BMIdc dacé a d a **6** [18,24], **6** [20,22], a d **é** a a ba a c [20]. B a. [17] ad céLRYGBcéadéLSGé (N = 142)b**6**d c**6** 6 6 a a **é é** a baac ad d é ad ad é badé BMIad%TWL é bé baac locd ; lo , **é**cd **é**cc da а d b K a. [20] A 6 ba BMI 6 c a B a. [17] a d K a. [20] c6 a ab a 6 , a 6 6 d a c a K d aca B cé a ab a b a.[20] d 6 6 6 6 a LSG. Ma - b a c a a d c b é d [17,20]. S é - , é c d cé d c d b V a c é a. [24] (N = 39) a d Gé a a d a. [18] (N = 43) é d é ca d c BMI b LRYGB c 6 a d 6 LSG a **6 6** a (P = 0.749 a d P > 0.05, c). A **6**, K a.[20] 6 d 6 cad c BMI 🖌 LRYGB c 🌢 ad a **6 6** a (P > 0.05). S a **6** 6 LSG a 6 , 6,6 ab **6 6** a 𝔄 (TWL), ab 𝔄 c a BMI a a 6c6 a ac 6 d.A 6 b b a ba % EBMIL. [25] Ma a c BMI locaca d а. [21] (N = 121) a d \bullet -6 c6 a LRYGB c6 a d é LSG é a 🌢 🌢 a a 🗕 🌢 LSG бb a 🌢 🌢 d a LRYGB a ad 6% EBMIL a **6** (65.2% . 46.7%, P = 0.002), **6** (65.8% . 44.9%, P= 0.004), (64.4% . 30.5%, P = 0.001), a d a (55.6% .

66.7 a 66 a .B a.[17] a db6d c6 daa 🌢 115 🌢 💪 142 d a c a DEXA.I cé da a c**6** d 6 d [17]. W Sc d a. [23] a **6** a DEXA, Ka a a d b 6 d c 6 а. 6 a [19] d a d ac 6d, a d O 6 a. b TWL 6 [22] d BIA. LM 🖌 cé d 645%6 LRYGB 6 a d 37% 6 LSG 🛭 🖌 Sc d a.[23]; 6 Géaada.[18] édaFFM écéb d 6 24.9 7.1% 6 TWL LRYGB 6 c6 a d 6 24.5 6.6% LSG 6 . a.[23] a **66** d a d a c a 6 DM ad Sc d . 57.9 14.4 6 LM (48.7, 10.5 , P = 0.037), b aca dca LM 🌢 🌢 a а сб а DM (-16.3 15.7 .-12.6 5.8 , P = 0.55).

d a FM a d% FM F d d cé a ab LRYGB 🌢 LSG a a d 6 ad 🌢 , а a **é é** a [18-20,23,24]. TWL 66 a a d 6 FM 6 LM **6** FFM **6** [18,19,21]. а а daca a, c cé db a 🌢 TWL a 6 FM [17,18,20-24]. R a c d ca а %FMad FFM **6** LM a a [39,40]; а а b d 6 а c d d d.Sa,B a. [17], O 🌢 a. [22], a d K a. [20], a 🙆 d 🌢 cad c % BF LRYGB **6** LSG **6** . P c BF **6** a d **6** 30-44%. D b**é**d c**é** 6 66 (DEXA, BIA, a a 🌢 6 a d d ac) d, сб а d.O.a, ac 🍯 d d ca a FM,% FM, a d % BF 6 a c6 a ab 6 a c ca 6b 6 d 6 LRYGB a d LSG [17-20,22-24]. Add 6 a , a aca acéa débé FM ad% BF a d а FFM **6** LM [17-24].

.

a 6 c6 a a d a LRYGB a d 66 6 ac a LSG a b**é** acc ab a бb сс a a b c ca ad 6 a [17-24]. A **6 6** dca aa babaad/b a ca ca d c a **6** db LRYGB a dLSG K a. [20], O **6** a. [22], G**6** a a d a. [18], Ka a a a. [19], B a. [17], **6** V a c **6** a. [24], LRYGB 6 d a a b % EWL d d а cédcdb Maa a. [21] a d d b d a. [23]. Add **6** a d a d 6 d Sc a cé a c ca é cé 66 c a d b**é**d (..a LRYGB a d LSG a c a 🖌 🌢) a 🏍 cad c6 dad cbaac locd b b а а a dFM 🌢 6 LM

W 6 6 -ba a c 6 a c6 - a 🍝 -cé b FM, FFM, a d/6 LM 6 . W 6 6 FM d ab, 6 6 LM cé db d a 🌢 ac a d ad a 6 b d c abéca addca c 🌢 a ca ac a a [41].R acbN a . [42] с dcada 6 6 a 6 d, a, a а BMI, a d a d **é** LRYGB **é** LSG a с c FFM **6** 66 a . Ad a 6 сb 6 a d adad c**é** da 🧉 6 a ca ac а a 6 d c a d/6 6 6 LM. A 66 a ac dad cé dca aa a a d 🌢 baac d 6 c6 ad a

cé éa	-b a	ca ac 🛛 🌢	da,
a c	6	ad a a d/6	
a ca	6 d6 6 dca	LM é a b	c6 d
[41,43]. M 6	ac ca	éabaé	6
d 6	6 d 6 ba	ac 6	LM Ó

d d L a 6 c d , ba c a ac а с. c a a 6. ac 6 a dé a 6 . a d d 6a d b**6**d c**6** d 6 b ab а а d а - 6 d 6 66 ba a c a cédc da a 6 ас a a 6 [17-24]. Ma ba a c b а с а а. [21] a а c d d 6 a BMI > 50 1 2 d a d ada а 60 a **6** a **6 6** d (= а 11); a c d d a a **é**d с ba a c 6c d с с ca a d .I add 🍯 c d d бЬ а с a 6 d dd 6 6 d 66 Κ а С а. [20] a b a a 6 d d a а с а a d 🌢 d 6 d d 6 а [44]. Ba a c 6 d 6 a d a 🌢 ab d 6 а а [44]. La a a a c 6 d a d 6 d 66 d с а cadbod co а a ab cé d ad é d baad a a . A 6 a ab a d 6 . La - ca , RCT a -C с а . Add 6 a a c 6 d b 6 сб a 6 а . ASMBS da 🖌 a da d cé а а d а 6 c 6 ac 6

D a a 🌢 ca d с b LRYGB a d LSG, a a 🌢 ba а 66 c, b**é**d cé d 6 a с, d cé c d d а ca d с d 6 a d b6d [17-20,22,24]. d а d da а ba a c FM, b 6 a , c a 🌢 6 LM, с а ca 6 6 c ca ac c [17-24]. C са 6 d 6 cé а 6 c 6 60 **6**100 a 6 da 6 LM [45], b d a а са а ad c 6 c da 🍯 A 6, c d сб а 6 b са а ca а ac с а a d а d ca a b . Fé ASMBS cé d 20 а , d ac (.., a bcad аc а) a 6 а 6 а a d 30 6dada 6 6 [46]. C**6** ad ca ac а а a d b ca ac a b b са 66 а 6 a d bód có 6 с.

.

66 cadbéd cé é é cé Α a ab LRYGB a d LSG [17-20,22,24]. M6 RCT b dd 6d ba a c 6 6 8 C а 6c d 6 a d a d С С cadbod co 6 66 ba d 🖌 d,a ch , c**é**- **é** b d , 6 c,d 6 6b 6 , a d ca ac

:Né

References

- 1. https://www.cdc.gov/nchs/fastats/obesity-overweight.htm
- 2. https://www.cdc.gov/obesity/data/adult.html
- 3.

et al. (2020) Rate and Determinants of Excessive Fat-Free Mass Loss After Bariatric Surgery. Obes Surg 30: 3119-3126.

43. 0c[Å T SthÕ[}8æļç^•ÅXÙÙthØæliækÙŠÔTtÅ T [i:^ÅXtÅÚ[I][!æcciÅŒŠtÅ ^ckæjtÅÇG€FÏDÅ Ò ^&ck[-ÅÚ![c^i}Å0}cæ\^Å[}Åc@^ÅÚ![c^i}ÅL`cæt`•Åæ)åÅŠ^æ}ÅTæ••Å[-ÅÚ[•¢ťÓæliæcli&Å Surgery Patients: a Systematic Review. Obes Surg 27: 502-512.

44. ÚĚ::å-\¦łá\ÞĖÅÜ[•@^\ÁVÓĖÅTæ^[Á₽ÕĖÅÕæ||æ*@^¦ÅÜĖÅÓ^||^ÅÙ₽ĖÅ^dæ|ĖÅÇG€FIDÁLong-

term follow-up after bariatric surgery: a systematic review. JAMA 312: 934-42.

- 45. ASMBS American Society for Metabolic and Bariatric Surgery (2022) L Bariatric Surgery.
- 46. King WC, Bond DS (2013) The importance of preoperative and postope physical activity counseling in bariatric surgery. Exerc Sport Sci Rev 41: 26