

Materials and Methods

Turbine transmission

Turbine- generator speed ratio:

$$Speed \ ratio = \frac{Generator \ speed}{Turbine \ speed}$$

$$\frac{1500 \text{ RPM}}{635 \text{ RPM}}$$
 2.3622

Figure 4: Turbine runner outer diameter.

Turbine runner tangential spacing and runner blade number:

Page 4 of 8

$$Vj$$
 $\sqrt{2}$ 9.81 25 $\sqrt{490.5}$ 22.147 m/s

Turbine arc length:

 $rQ = \frac{Rc Q^o}{180}$

3.14 52 72 o 65.132 mm

Turbine design parameters:

$$V = \frac{4 + 0.45}{(0.46)^2} = \frac{1.8}{0.664424} = 2.7091$$

Area of the penstock pipe:
$$A = \frac{(d)^2}{4}$$

$$A = \frac{(0.46)^2}{4} = 0.166$$

Head loss=
$$\frac{10 \quad n^2 \quad Q^2}{D_p^5} \quad Lp$$

Head loss=
$$\frac{10 (0.012)^2 (0.45)^2}{(0.46)^5}$$
 162

Percentage of head loss:

$$\% \text{Head loss} = \frac{\text{Head loss}}{\text{Gross head}}$$

$$\% \text{Head loss} = \frac{2.29mm}{25m} = 0.0916$$

Pulley and belt design

Turbine pulley belt speed

Velocity=
$$\frac{d}{2}$$
 W

$$W = \frac{2 N}{60}$$

Velocity=
$$\frac{0.355}{2}$$
 $\frac{633.80}{30}$ 11.77 m/s

Belt centre distance

$$C A \sqrt{A^2 B}$$

$$A = \frac{L}{4} = \frac{R}{8}(d - D)$$

$$B = \frac{(D-d)^2}{8}$$

$$A = \frac{1825}{4} = \frac{1}{8}(150 - 355) = 258.0375mm$$

$$B = \frac{(355 - 155)^2}{8} = 5253.125 mm$$

$$C$$
 258.037 $\sqrt{(258.037)^2}$ 5253.125 505.6869mm

			Page 7 of
ı	1		

Innov Ener Res, an open access journal ISSN: 2576-1463

Citation: Ngoma DH, Wang Y, Roskilly T (2019) Crossfow Turbine Design Specifications for Hhaynu Micro-Hydropower Plant-Mbulu, Tanzania. Innov Ener Res 8: 225.

Page 8 of 8

- 5. Mockmore CA, Merryfeld F (1949) The Banki water turbine. Engineering experimental station bulletin series No. 25.
- 6. http://www.entec.com.np/
- 7. Nasir BA (2014) Design considerations of micro hydro electric power plant. International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, TMRRESUMPENERGY PRocec m 2 v C

Innov Ener Res, an open access journal

Volume 8 • Issue 2 • 1000225