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Introduction
Alzheimer’s disease (AD) is the leading cause of dementia in the 

elderly [1]. �e majority of individuals present with late-onset AD (≥ 
65 years), but early-onset (<65 years) has also been reported in ~5% of 
cases. Both common genetic variants, such as the APOE ε4 allele, and 
rare variants, have been found to impact the risk for both early- and late-
onset AD [2-5]. While more than 20 genetic loci have been connected 
with late-onset AD to date, the underlying genetic architecture is 
complex and new risk genes are still being identi�ed [6]. 

While genome-wide association studies (GWAS) have been key in 
identifying a majority of the novel regions of genetic risk in the past ten 
years, by design, GWAS are unlikely to recognize risk variants with rare 
frequencies in the population and necessitate the use of large cohorts 
of hundreds or even thousands of individuals to reach statistically 
signi�cant conclusions [6]. In contrast, whole exome sequencing 
(WES) provides an alternative and complementary method to locate 
rare alterations in genes which may have medium to large e�ects on 
disease risk and require far fewer participants [6-8]. WES studies have 
identi�ed new mutations in both known AD genes and novel risk genes, 
including AKAP9, PLD3, TREM2 and UNC5C, as well as protective 
variants, such as those in TREML2 [7-17]. Moreover, studying families 
with a heavy burden of AD and searching for genetic changes that 
segregate with disease can provide a unique opportunity to locate rare 
variants in novel risk genes such as NOTCH3, PLD3 and TTC3 [9,13,18]. 

�ese large AD families can reveal how multiple genetic variants may 
act in concert to in�uence risk [19-21]. For example, the APOE ε2 allele 
was found to delay the age of onset by ~12 years in carriers of the E280A 
mutation in the PSEN1 gene in the early-onset ‘Paisa’ pedigree [19]. In 
addition, genetic linkage can assist in narrowing genomic regions of 
interest potentially related to disease in large families [22]. In an e�ort 
to discover novel genes that may contribute to late-onset AD risk, we 
performed WES in 23 multiplex families that present with dominant 
inheritance patterns and prioritized variants that were inherited from 
common ancestors. 

Materials and Methods
Patient ascertainment of extended AD families

240 individuals (77 AD subjects, 4 individuals with mild cognitive 
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impairment (MCI) and 159 una�ected relatives) from 23 families of 
European ancestry heavily a�ected with late-onset AD were utilized in 
this study (Supplementary Table 1). All family members were recruited 
a�er providing informed consent and with approval by the relevant 
institutional review boards. A�ected individuals meet the standard 
NINCDS-ADRDA criteria for AD and MCI [23-25]. In addition, 
cognitive and neuropsychiatric data were collected on all a�ected 
indivduals using the NCRAC LOAD battery, the Geriatric Depression 
Scale (GDS15), the Cornell Scale for Depression in Dementia 
(CSDD) and the Neuropsychiatric Inventory Questionnaire (NPIQ). 

Whole exome sequencing and variant detection

99 individuals (77 AD patients, 4 individuals with MCI, and 18 
una�ected relatives) from 23 AD extended families underwent WES 
(Supplementary Table 1). �ree micrograms of DNA from each sample 
were prepared using the SureSelect Human All Exon 50Mb Kit (Agilent 
Technologies) and the Paired-End Multiplexed Sequencing library 
kit (Illumina). Exome capture and sequence library construction was 
performed on a Sciclone G3 NGS Workstation (Caliper Life Sciences) 
and DNA was tested for uniform enrichment of targets with qPCR 
following established protocols provided by Agilent. Two exome 
sample libraries were sequenced per lane on a HiSeq 2000 Sequencing 
System (Illumina) in paired-end 2 × 100 bp runs. Sequencing data was 
processed using the Illumina RTA base calling pipeline v1.8. Reads 
were aligned to the human reference genome (hg19) with the Burrows-
Wheeler Aligner (BWA) and variant calling performed with the Genome 
Analysis Toolkit (GATK) version 2.8 [26,27]. GATK parameters for 
variant quality control included duplicate sequence read removal, 
minimum read depth of 5, genotype quality (GQ) ≥ 20, variant quality 
score recalibration (VQSR, VQSLOD>0) and Genome Mappability 
Scores equal to 1 for the 35 base pair (bp) track and greater than or 
equal to 0.5 for the 20 bp track from the Duke Uniqueness Track [28]. 
�e Duke uniqueness scores, generated for the ENCODE project and 
available as tracks in the University of California, Santa Cruz (UCSC) 
Genome Browser, report how unique a sequence is, where scores of 1 
represent a completely unique sequence, a score of 0.5 indicates the 
sequence occurs exactly twice, and 0 represents the sequence occurs 
>4 times in the genome [29,30]. Small insertions and deletions were 
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Discussion
�rough WES of large families with a heavy burden of AD, variants 

in both known and novel loci were identi�ed that could contribute 
to risk. Filtering for rare, segregating, and potentially damaging 
variants identi�ed �ve novel candidate genes (Table 2). �ese genes 
encompass a variety of functions that are suggestive of a link to AD. 
For example, two of these genes are involved in regulating immunity: 
CD163L1 and CLECL1 [45-47]. CD163L1 is expressed in macrophages, 
upregulated in response to IL-10 and acts as an endocytic receptor 
[48]. CLECL1 is highly expressed in B cells and dendritic cells and 
may enhance the immune response through upregulation of IL-4 [46]. 
Neuroin�ammation has been shown to occur in AD patients, possibly 
through misregulation of microglia and triggered by amyloid beta 
plaques [49]. Additionally, established AD risk genes, such as ABCA7, 
CD33 and TREM2, have also been linked to the immune system [4]. 
Another gene identi�ed through this study, CTNNA1, encodes a 
catenin expressed at elevated levels in the nervous system [50]. GALR3 
is a receptor for the neuropeptide galanin, which has been shown to 
modulate a variety of processes, including cognition and memory, 
functions disrupted in AD [51,52]. MIEF1 was nominally associated 
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a region of interest, but not necessarily the causative alterations. In the 
study presented here, rare changes potentially contributing to AD risk 
were found in genes implicated in the immune response, CD163L1 and 
CLECL1, and neuronal function, CTNNA1, GALR3, MIEF1, PLEKHG5 
and THBS2. Variants were also identi�ed in genes previously connected 
to both early and late-onset AD including AKAP9, INPP5D, SORL1 and 
UNC5C. Further investigation will be required to fully assess the cellular 
and molecular consequences of the alterations identi�ed here as well as 
determine whether the novel genes found are involved in AD risk across 
larger datasets.
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