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CSF-dependent macrophages (day 9 of culture) (Figure 1a). Protein 
bands also differed between GM-CSF-dependent macrophages 
incubated with or without human neutrophil elastase (HNE) and 
harvested on day 9 of culture (Figure 1b). Protease-activated receptor-2 
The protease-activated receptors (PARs) are a family of G protein-
coupled receptors that undergo activation following proteolytic cleavage 
of the amino terminal by extracellular proteases [10]. PAR-2 is found in 
many tissues of the body and may be an important player in 
inflammation. Western blotting showed that GM-CSF stimulation 
increased PAR-2 expression by macrophages (Figure 1c), with 
upregulation of PAR-2 protein over time (Figure 1d). It has been 
reported that PAR-2 is activated in macrophages by various serine 
proteases [11], including HNE [12]. When GM-CSF-dependent human 
macrophages were stimulated with HNE (50 μM) for 6 h on day 9 of 
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Figure 1: (a) and (b) Coomassie Brilliant Blue (CBB) staining. (c) Western blotting for PAR-2. (d) Time-dependent changes of PAR-2 expression. (e) Production of IL-
13 after stimulation with HNE. (f) Effect of MAPK inhibitors and TMB-8 on IL-13 production. (g) Western blotting for α-SMA after human pancreatic stellate cells were 
stimulated with IL-13. Data were obtained using macrophages from three individuals in each group and represent the mean + SE. *P<.05; **P< .01 (with Bonferroni’s 
correction); N.S. not significant.
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Figure 2: (a) Effect of silencing PAR-2 or β-arrestin 2 and rottlerin (a PKC inhibitor) or U73122 (a phospholipase C inhibitor) on IL-12p40 production by macrophages 
pretreated with HNE and stimulated with LPS. (b) Effects of silencing TRAF6, TLR4, EGFR, or DUOX2 on IL-12p40 production by macrophages pretreated with 
HNE and stimulated with LPS. (c) Role of phospholipase C in activation of PAR-2. (d) Mechanism by which dual oxidase 2 (DUOX2) promotes production of reactive 
oxygen species (ROS) via the Ca2+
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Figure 3:
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Figure 4: (a) Production of single immunoglobulin IL-1-related receptor (SIGIRR) by macrophages after stimulation with substance P (SP). (b) Effect of silencing specific 
protein 1 (Sp1) on SIGIRR production after stimulation with SP. (c) Effect of silencing TGFβ1/2/3 or Sp1 on TGFβ1 production after stimulation with SP and effect of 
Sp1 siRNA or mithramycin (an Sp1 inhibitor) on SIGIRR production. (d) Influence of cross-talk between Sp1 and Fli-1, TIF1β or C/EBPβ on SIGIRR production after 
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TGFβ1 acts to downregulate NK1R gene expression [54]. Interestingly, 
silencing of Sp1 was found to result in significantly increased TGFβ1 
protein production by SP-stimulated macrophages [55]. Mithramycin 
0 43mframycin 
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Figure 5: (a) Signaling pathway after NK1R activation. (b) Effect of MAPK inhibitors on production of regulated on activation, normal T cell expressed and secreted 
(RANTES) by macrophages stimulated with substance P (SP). (c) Effects of TGFβ1/2/3 siRNA, GRK2 siRNA, β-arrestin 2 siRNA, Y-27632 (a ROCK inhibitor) or Dynasore 
(a dynamin inhibitor) on RANTES production after exposure to SP. (d) Effect of TGFβ1/2/3 siRNA, C/EBPβ siRNA, specific protein 1 (Sp1) siRNA or mithramycin (an Sp1 
inhibitor) on production of TGFβ1 or RANTES after stimulation with SP. (e) Western blotting for TGFβ1. (f) Effects of cross-talk between Sp1 and Fli-1, TIF1β or C/EBPβ 
on RANTES production after stimulation with SP. Data were obtained using macrophages from three individuals in each group and represent the mean + SE. *P<.05; 
**P< .01 (with Bonferroni’s correction); N.S. not significant.

elements and forms heteromeric complexes with other transcription 
factors, including Sp1. The C/EBPβ promoter contains a TATA box and 
has binding sites for several transcription factors regulating its mRNA 
expression, including C/EBPβ itself [66], signal transducer and activator 
of transcription 3 (STAT3) [67], and Sp1 [68]. Inhibition of IL-12p40 
production via the signal regulatory protein α (SIRPα)/surfactant 
protein D (SP-D) signaling pathway SIRPα is a highly glycosylated 
type-1 transmembrane protein comprising three immunoglobulin-like 
extracellular loops and a cytoplasmic tail that has three classical 
tyrosine-based inhibitory motifs. Western blotting showed that GM-
CSF upregulates SIRPα expression by macrophages (Figure 6a). It was 
found that an ERK inhibitor (PD98059) significantly suppressed the 
response of SIRPα to GM-CSF, whereas this response was only partially 
inhibited by a p38α/βMAPK inhibitor (SB203580), an intracellular Ca2+ 
antagonist (TMB-8), or an NF-κB inhibitor (PDTC) (Figure 6b). All 
SIRPs possess extracellular domains with a distal immunoglobulin 
variable-like fold (D1) and two proximal immunoglobulin constant-
like folds (D2-D3) [69]. CD47-SIRPα signaling was reported to 
downregulate responsiveness to IL-12 and inhibit the activation of 
dendritic cells [70]. The epithelium of pulmonary alveoli is largely 

composed of type I and type II alveolar cells, with type II cells producing 
GM-CSF and SP-D. It was reported that SP-D binds to the proximal 
domain (D3) of SIRPα, which is distant from the binding domain D1 of 
CD47 [71]. Binding of CD47 to SIRPα initiates signaling that inhibits 
phagocytosis [72] via several downstream molecules, including Src 
homology 2-containing phosphotyrosine phosphatase (SHP) and Ras 
homolog gene family member A (RhoA). GM-CSF was initially found 
in conditioned lung tissue medium after injection of LPS into mice [73]. 
Recruitment of monocytes to the lungs is required for normal immune 
function and the inflammatory response to pulmonary injury, and 
resident pulmonary macrophages are reported to exist in close 
proximity to the respiratory epithelium [74]. The IL-12 receptor (IL-
12R) has two known subunits, which are IL-12R β 1 and IL-12R β 2 

[75]. In humans, IL-12R β2 is expressed by airway and parenchymal 
fibroblasts, and IL-12 signaling via its β2 subunit leads to the 
phosphorylation and activation of signal transducer and activator of 
transcription 4 (STAT4), promoting pulmonary fibrosis. IL-12 also 
promotes the expression of type 1α1 collagen and transforming growth 
factor-β1 by fibroblasts, which are involved in remodeling small 
airways, and the serum level of IL-12p40 is elevated in idiopathic 

https://en.wikipedia.org/wiki/Phosphorylation
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Figure 6: (a) Western blotting for signal regulatory protein α (SIRPα). (b) Effect of  PD98059, TMB-8, SB203580 or PDTC on SIRPα production and western blotting 
for SIRPα. (c) Inhibitory effect of surfactant protein D (SP-D) on IL-12p40 production after exposure of macrophages to lipopolysaccharide (LPS). (d) Time-dependent 
inhibitory effect of SP-D on IL-12p40 production after exposure to LPS. (e) Effects of silencing SIRPα/β/γ, EGFR, p22phox or β-arrestin 2 on IL-12p40 production after 
exposure to LPS. (f) Effects of Src homology 2-containing phosphotyrosine phosphatase (SHP) siRNA or Y27632 (a ROCK inhibitor) on IL-12p40 production after 
pretreatment with SP-D and exposure to LPS. (g) Effects of BIRB796 or SB203580 on IL-12p40 after pretreatment with SP-D and exposure to LPS. (h) Effects of Y-27632 
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(a non-peptide agonist). It was unexpectedly found that pretreatment 
with AC-264613 attenuated IL-12p40 production by macrophages after 
LPS stimulation compared to pretreatment with HNE (Figure 7a). 
Tumor necrosis factor receptor associated factor 6 (TRAF6) is the key 
adaptor in the TLR4 signaling pathway [84]. TLR4 induces IL-12p40 
expression in macrophages [85], while HNE activates both TLR4 
[86,87] and PAR-2, so HNE-TLR4 interaction may influence IL-12p40 
production. HNE also stimulates MyD88, IRAK, and TRAF6 signal 
transduction, leading to NF-κB activation and induction of various 
cytokines [88]. The IRF transcription factor family is a member of the 
winged helix-turn-helix DNA-binding domain superfamily [89]. IRF-5 
is important for innate antiviral and inflammatory responses, and is 
activated by TLR4 [90]. Because IRF5 expression is upregulated by GM-
CSF [91], it shows higher expression in GM-CSF-dependent 
macrophages than M2 macrophages. IRF5 directly activates 
transcription of genes encoding IL-12p4, IL-12p35, and IL-23p19 [33]. 
Treatment of macrophages with siRNA for IRF5 significantly reduced 
IL-12p40 production after stimulation with LPS (Figure 7b). Treating 
macrophages with HNE caused a concentration-dependent decrease of 
IRF5 protein expression (Figure 7c), while siRNA for PAR-2 or beta-
arrestin 2 blunted this effect. Silencing SPAK/JNK also suppressed the 
effect of HNE on macrophages, but STAT3 siRNA had a weaker 
influence (Figure 7d). PAR-2 is involved in the regulation of apoptosis 

[92], and PAR-2 signaling is independently mediated via a β-arrestin 
2-dependent pathway and a G-protein/Ca2+ pathway. β-arrestin 
interacts with mouse double minute 2 homolog 

(MDM2), anE3 ubiquitin-protein ligase that ubiquitinates p53 and 
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dependent like macrophage phenotype via HO-1 expression [97]. It was 
been reported that SP induces transformation of GM-CSF-dependent 
rat macrophages to an M-CSF-dependent like phenotype [98,99]. GM-
CSF-dependent human macrophages and M-CSF-dependent human 
macrophages were exposed to substance P for 6 h, followed by western 
blotting to assess cell markers. Before stimulation with SP, GM-CSF-
dependent macrophages were CD80highCD163low, while M-CSF-
dependent macrophages were CD80lowCD163high. Incubation with SP 
increased expression of both CD163 and CD80, soCD80lowCD163high 
M-CSF-dependent like macrophages were not induced. 

Conclusion
Therefore, incubation of human GM-CSF-dependent macrophages 

with substance P for 6 h did not result in a shift to the M-CSF-dependent 
like phenotype, unlike murine and rat M1 macrophages.
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