Atherosclerosis: Open Access

Expert Review

Open Access

Growth Factor-Induced Amino Acid Uptake by Vascular Smooth Muscle Cells

Masahide Higaki and Kentaro Shimokado*

National Cardiovascular Center Research Institute, Fujishirodai, Suita, Osaka 565-8565, Ethiopia

Abstract

acids was not tested under the same conditions. In this study, we asked whether PI3K mediates platelet-derived growth -æ&c[¦ (ÚDGF)- •ci{ [æ<^å]cæ<^ [~ åi ^!^}c æ{i}[æ&iå• c@æc æ!^ cæ\^}] c@![* @ 3 {æb[! æ{i}[æ&iå c!æ}•][!c^!• expressed in rat vascular smooth muscle cells and other cell types and whether PI3K mediates amino acid uptake •ci { `|æc^å , ic@ åi ^\^}c *\[, c@ -æ&c[!• æ}å çæ•[æ&ciç^ •`à•cæ}&^•. ÚDGF i}&\^æ•^å c@^ `]cæ\^ [-Ž3Hi |^*&i}^, Ž3Hi $\begin{array}{l} \left| \left[i \right]^{h}, \ x \right]^{a} \ \tilde{z}^{3} H i \ x |^{*}i \right]^{a} \ i \ x \ a^{-} x \ a^{-} x \ a^{-} a^{ \begin{bmatrix} c a i^{a} & a \\ a & a \end{bmatrix} \begin{bmatrix} c a i^{a} & a$, á æ{i M c@^i! μ{[^ % Â Â } Â µ{[^ æ{i M c@^i¦ Â } [}æ{i}[æ&iå]cæ\^,æ•[à•^¦ç^å i}Ù,i•• 3V3 &^||•. Y^ &[}&|`å^ c@æc ÚI3K {^åiæc^• c@^ `]cæ\^ [~ åi ^!^}c amino acids by vascular smooth muscle cells and other cell types stimulated with a variety of growth factors, including c!æ}•-[¦{å}* *¦[_c@ ~æ&c[¦- . O`¦ ,}åå}*• •`**^•c c@æc ÚI3K {æ^]|æ^ æ} å{][!cæ}c ¦[|^ å} çæ•&`|æ!]æc@[]@^•ä[|[* by regulating amino acid uptake.

ÚDG

ÚDG [}ä

å ^

Keywords: $(a_1, a_2, a_3, a_4) = (a_1, a_2, a_4) =$

Introduction

> *Corresponding author: Kentaro Shimokado, National Cardiovascular Center Research Institute, Fujishirodai, Suita, Osaka 565-8565, Ethiopia, E-mail: kshimka@res.ncvc.go.com

Received: 29-J[°]|-2022, Mæ}^{*}•&¦i]c N[. æ•[æ-22-77595; Editor assigned: 01-A^{*}*-2022, Ú¦^ÛC N[. æ•[æ-22-77595 (ÚÛ); Reviewed: 15-A^{*}*-2022, ÛC N[. æ•[æ-22-77595; Revised: 18-A^{*}*-2022, Mæ}^{*}•&¦i]c N[. æ•[æ-22-77595 (Ü); Published: 25-A^{*}*-2022, DOI: 10.4172/æ•[æ.1000186

Citation: Hi*æ\å M, Ù@i{ [\æå[K (2022) G¦[,œ Fæ&c[¦-l}å`&^å A {å}[A&åå W]œ\^ à `Xæ•&`|æ¦ Ù { [[c® M`•&|^ C^||•. Atheroscler Open Access 7: 186.

Copyright: © 2022 Hi*æ\å M, et al. V®i• i• æ} []^}-æ&&^•• æ\d&|^ åi•c\åà`c^å`}å^\ the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Discussion

 $\begin{array}{c} A_{1,1}, a_{1,2}, a_{1,$

Page 2 of 3

14. Kæc•å X, G^[¦*å[][`|[• G, Ù\æ, åæ A, Oå\[}[{[`D, K|^cœ• D, ^cæ]. (2019) Non &æ¦åå[^{ à [lå& •c[\^ à}]æci^}c•__ic@æclåæ], à¦å||æci[}. A}*å[|[*^ 70: 299-304. 15. W*^{*}i|^{*}&æ} M, A\æ[^] MV, E¦åi}& I, O:¦æ• DM, C[}\àæ^{*}il CE, ^c æ|. (2019) A}d&[æ^{**}|ædi[} •clæc^*^{*} i}]æd^}c• jic@ æcliæ| ,àlii||ædi[} æ-c^¦ &æl[ciå endarterectomy. A&cæ C@il B^|* 119: 209-216.