

Hydrometallurgy: Principles, Processes and Applications

Fretz Hawkins*

Department of Environment and Safety Engineering, University of Bornova, Turkey

Abstract

Hydrometallurgy is a branch of metallurgical engineering that focuses on the extraction and recovery of metals from their ores through aqueous chemistry. This paper provides a comprehensive overview of hydrometallurgy, detailing its principles, major processes, and applications. The discussion covers the fundamental concepts,

environmental and economic impacts of hydrometallurgical processes and examines recent advancements and

Keywords: H d_{1} esa q_{2} ; Leac r_{1} ; S q_{2} , C r_{1} ce q_{2} a_{1} , ; Mera Rec q_{2}

Introduction

H d, esa $\langle q \rangle$, a $\langle q \rangle$, ca sec , , , s e ed, f esa $\langle q \rangle$, (a) $\langle q \rangle$, f $\langle q \rangle$, e e' $\langle q \rangle$, a d $\langle q \rangle$, e, , f $\langle q \rangle$, a be esa $\langle q \rangle$, (a) $\langle q \rangle$, f $\langle q \rangle$, a d $\langle q \rangle$, a d $\langle q \rangle$, e, , f $\langle q \rangle$, a be esa $\langle q \rangle$, f $\langle q \rangle$, e, a d $\langle q \rangle$, e, a d

Principles of Hydrometallurgy

1. Leaching

Leac ..., s e q, s, s a e, f $d_{1,1}$ esa $\langle q$, ca, q, ce, e, s, $\langle r_{1,1}, r_{2,1}, r_{2,$

Acid Leaching: Us, /e, ac d, , , c a, , $f_{(9)}$ c ac d (H_2SO_4) , d, c , c ac d (HC), , d, , e esa , f, s e e. Ac d eac , c , ed f, c, e, d, a d, a, e's ac, [2].

Alkaline Leaching: E (, , a, a, e, , s, , , , , c, a, , d, d, d, w, de (NaOH) \mathbf{a} , a \mathbf{a} , a \mathbf{b} , ase ((NH₄)2CO₃), s, d, , , e es a., , , e d, , e \mathbf{a} , ed f \mathbf{a} , c e a d a , , , a \mathbf{a} , a $\mathbf{a$

Oxidative Leaching: I, e, s e, e, f, v_1 d/, a e, s, s, e, a ce s e d, s, f, esa... F, a/a (e, c, a, de eaching, edf, dava acs, s, e, e e c, a, de (CN), eacs, s, ds, f, a, bec, e, a/.

2. Solution Concentration and Puri cation

Solvent Extraction: U, e, [a, c, c, e], [a, e],

Ion Exchange: U₃, /e, e_1 , as a_1 , a_2 , a_3 , a_4 , b_1 es a_1 , f_1 , s e_1 , s_1 , e_1 , e_2 , e_3 , e_4 , e_4 , e_5 , e_1 , e_2 , e_3 , e_4 , e_1 , e_2 , e_3 , e_4 , e_3 , e_4 , e_5 , e_1 , e_2 , e_3 , e_4 , e_5 , e_1 , e_2 , e_3 , e_4 , e_5 , e_1 , e_2 , e_3 , e_4 , e_5 , e_1 , e_2 , e_3 , e_4 , e_5 , e_1 , e_2 , e_3 , e_4 , e_5 , e_1 , e_2 , e_3 , e_4 , e_5 , e_1 , e_2 , e_3 , e_4 , e_5 , e_1 , e_2 , e_1 , e_2 , e_3 , e_4 , e_5 , e_1 , e_2 , e_1 , e_2 , e_1 , e_2 , e_1 , e_2 , e_1 , e_1 , e_2 , e_1 , e_1 , e_1 , e_2 , e_1

Applications of Hydrometallurgy

1. Mining and Ore Processing

H d esa $\{q$, a' se $\{e, e'\}$, ed s e [d, n] f q a' n acs [e a, f] [q e, [5], e(q) ce, [a a] c [a] ad [a a a e], f q [q] [q] esa $\{q\}$ ca [e a] d [c] [a'] [q e] s as [a e] d [c] [a'] [a a] [a

*Corresponding author: S.M. Nakoul, Department of Environment and Safety Engineering, University of Bornova, Turkey, E-mail: s_mnakoul@yahoo.com

Received: 2-July-2024, Manuscript No. jpmm-24-143773, Editor assigned: 4-July-2024, Pre QC jpmm-24-143773 (PQ), Reviewed: 18-July-2024, QC No jpmm-24-143773, Revised: 23-July-2024, Manuscript No jpmm-24-143773 (R), Published: 30-July-2024, DOI: 10.4172/2168-9806.1000433

Citation: Nakoul SM (2024) Hydrometallurgy: Principles, Processes and Applications. J Powder Metall Min 13: 433.

Copyright: © 2024 Nakoul SM. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Copper Extraction: S_{1} f_{1} c_{1} c_{2} c_{3} c_{4} c_{5} c_{7} c_{7}

Gold Extraction: C a de eac $f = e^{-1}$, e $f = e^{-1}$, e

demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. J Power Source 179: 571–575.

9. Thi NBD, Kumar G, Lin CY (2016) Electricity generation comparison of food

waste-based bioenergy with wind and solar powers: A mini review. Sustainable Environment Research 26: 197-202.

 Thi NBD, Kumar G, Lin CY (2015) An overview of food waste management in developing countries: current status and future perspective. J Environ Manag 157: 220-229.