

Investigating the Effect of Phenylbutyrate and Valproate Supplementation on Atherosclerotic Plaque Regression in a High Fat Diet Fed LDLR-/-Mouse Model

Sarvatit Patel^{1,2}, Miranda De Jong¹, Aric Huang¹, Yuanyuan Shi¹ and Geoff H Werstuck^{1,2,3*}

FV@;[{ à [•å•kæ}åkŒc@^;[•&|^;[•å•kÜ^•^æ;&@k0}•cic čc^ÉkT&Tæ•c^;kW}åç^;•ic ÉkPæ {å[c]}ÉkU}cæ;å[ÉkÔæ}æåæ

GÖ^]ælc {^}ch[~hÔ@^ {i•c;^hæ}åhÔ@^ {i&ælhÓi[][* Éh T& Tæ•c^;hW}iç^;•ic ÉhPæ {i|c[}EhU}cæli[EhÔæ}æåæ

^HÖ^]æ/c { ^}c\[~\l{ T ^&&&a&} ^Eh T & Tæ•c^;l\W}åç^!+åc ^EhPæ { å|c [}EhU}cæ/ä [EhÔæ}æåæ

*Corresponding author: Geoff H Werstuck, Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada, Tel: 9055212100, extn. 40747; Fax: 9055771427; E-mail: Geoff.Werstuck@taari.ca

Received date: March 13, 2019; Accepted date: March 27, 2019; Published date: April 02, 2019

Copyright: © 2019 Patel S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Objective: Evidence suggests that Endoplasmic Reticulum (ER) stress plays a causative role in the development of atherosclerosis. Our previous studies have shown that ER stress signals through glycogen synthase kinase (GSK)-3 to activate pro-atherogenic pathways. The purpose of this study is to determine if small molecule inhibitors of ER stress-GSK3 signaling can promote the regression of existing atherosclerotic lesions.

Methods: Four-week-old female low density lipoprotein receptor deficient (LDLR-/-) mice were fed a high fat diet for 16 weeks to establish atherosclerotic lesions. A subset of mice was sacrificed at this time to set the baseline for atherosclerotic progression. The remaining mice were switched to stand chow diet (control) or a standard chow diet supplemented with phenylbutyrate, a chemical chaperone that reduces ER stress, or valproate, a branch chain fatty acid that selectively inhibits GSK3 . These mice were harvested at 30 weeks of age and atherosclerotic lesions were quantified and characterized.

Results: Dietary supplementation with phenylbutyrate and valproate had no effect on body weight but did significantly reduce plasma cholesterol levels. Atherosclerotic lesion areas at the aortic sinus and total atherosclerotic volumes were significantly larger in the control group compared to the baseline group, indicating that the lesions continued to grow despite the switch from a high fat diet to chow diet. The supplemented mice had significantly smaller lesions than the control group, but not the baseline group. Both phenylbutyrate and valproate supplementation reduced lesional macrophage/foam cell content and necrotic core area, and increased smooth muscle cell content and collagen content, relative to control and baseline groups. These changes are indicative of more stable atherosclerotic lesions.

Conclusion: Small molecule inhibitors of ER stress-GSK3 signaling do attenuate the growth of existing atherosclerotic lesions and appear to increase lesion stability. It remains unclear whether these interventions can actually promote atherosclerotic regression.

Keywords: Atherosclerosis, Mouse model; Plaque regression; Dietary supplementation; ER stress

Introduction

Atherosclerosis is an infammatory disease that involves the accumulation of lipid engorged macrophages in the walls of medium and large arteries [1]. Initially, atherosclerotic lesions grow asymptomatically, however more advanced lesions can significantly impede blood f ow through the artery and cause unstable angina, stoke or myocardial infarction ese cardiovascular diseases are the leading cause of death in the world [2].

A great deal of research has been focused upon understanding the underlying molecular and cellular mechanisms of atherogenesis. It is now well established that atherosclerosis initiates at sites of endothelial injury, usually in regions of turbulent blood f ow, including vascular bifurcations and inner curvatures [3]. Leukocytes and Low Density Lipoprotein (LDL) particles infltrate the intima through gaps in the damaged endothelium. Intimal monocytes di erentiate into macrophages which endocytose oxided-LDL and e erocytose apoptotic bodies thus becoming lipid laden foam cells. Macrophage/ foam cells secrete cytokines that perpetuate the inf ammatory response and promote vascular smooth muscle cell (VSMC) migration into the intima. VSMCs secrete collagen which contributes to the development of a f brous cap over the growing lesion. If foam cell apoptosis exceeds macrophage e erocytosis, an acellular necrotic region of cellular debris (predominately cholesterol/lipids) accumulates within the lesion. is necrotic core destabilizes the lesion making it prone to rupture. If the lesion ruptures and the circulating blood contacts the lipid-rich contents of the lesion, a thrombus will rapidly form which may occlude blood f ow through the vessel. Occlusion of a major artery will cause myocardial infarction or stroke [1,4].

Many interventions have been identified that can slow or block the progression of atherosclerosis, in pre-clinical model systems [5].

with phenylbutyrate (38 g/L in the drinking water), or control diet valproate treated groups were sacrif ced a er 10 additional weeks (30 containing valproate (625 mg/kg). Control, phenylbutyrate treated and weeks of age).

To investigate the e ects of phenylbutyrate and valproate on atherosclerosis, the aortic sinus was removed and processed, as previously described [20]. Cross-sections of the aortic root were stained with Masson's trichrome stain (Figure 1B) and the atherosclerotic lesion areas (Figure 1C) and volumes were quantified (Figure 1D) [20].

of supplementation on metabolic parameters

ere were no signif cant di erences in fasting blood glucose level, body weight, liver weight, adipose weight between experimental groups (Table 1). Hepatic triglyceride and cholesterol levels were lower in the treatment groups compared to baseline (Figure 2A and 2B). Control, phenylbutyrate- and valproate-treated mice had signif cantly lower total plasma triglyceride and cholesterol levels compared to baseline (Figure 2C and 2D). is di erence is likely due to the switch from HFD to standard diet. Both phenylbutyrate- and valproatetreated mice had signif cantly lower total cholesterol levels compared to control.

Figure 2 Hepatic and plasma lipid levels. Evantif cation of (A) Hepatic triglyceride, (B) Total cholesterol levels and fasting plasma (C) Triglyceride and (D) Total cholesterol levels from the indicated treatment groups n=5.7 mice in each group; *p<0.05, **p<0.01, *****p<0.0001.

Characterization of atherosclerotic lesions

Mason's trichrome staining was used to assess necrotic core areas and collagen content within the atherosclerotic lesions ere were signif cantly larger acellular necrotic regions the atherosclerotic lesions from control mice compared to baseline and supplemented mice (Figure 3A and 3B). Collagen content, a marker for more stable atherosclerotic plaques, was signif cantly elevated in the phenylbutyrate and the valproate treated mice compared to both the baseline and the controls (Figure 3C and 3D).

Lesional vascular smooth muscle cell and macrophage/foam cell content was quantifed in each of the experimental groups using immunof uorescent staining with antibodies against smooth muscle actin and CD107b (Mac-3), respectively. Both phenylbutyrate and valproate treatment resulted in signif cantly increased lesional VSMC Honten Grelative to baseline and control groups (Figure 4). is is consistent with the observed increase in plaque collagen (Figure 3C).

Figure 3 Necrotic core area in atherosclerotic plaques (A) E uantification of necrotic core area in atherosclerotic plaques at the aortic sinus normalized to the lesion area (B) E uantification of collagen staining area at the aortic sinus normalized to the lesion area n=7-8 mice/group; p<0.05, p<0.001, p<0.001, p<0.001, p<0.0001, p>0.0001, p>0.0

Control,	phenylbun-O	cob roate t	ar	hen

os pMaseensa% u Tuno uoresc ssli h

h antilo

Citation: Patel S, De Jong M, Huang A, Shi Y, Werstuck GH (2019) Investigating the Effect of Phenylbutyrate and Valproate Supplementation on Atherosclerotic Plaque Regression in a High Fat Diet Fed LDLR-/- Mouse Model. Atheroscler Open Access 4: 123.

antibody against -actin (green) and co-stained with DAPI (nuclei stain, blue). Atherosclerotic lesions are outlined (yellow). (B) E uantification of -actin staining area normalized to the total lesion area n=6.8 mice/group, *p<005, ***p<0001, ****p<0001.

Page 6 of 10

Citation: Patel S, De Jong M, Huang A, Shi Y, Werstuck GH (2019) Investigating the Effect of Phenylbutyrate and Valproate Supplementation on Atherosclerotic Plaque Regression in a High Fat Diet Fed LDLR-/- Mouse Model. Atheroscler Open Access 4: 123.

Page 7 of 10

Discriziou guardia (Concarizio pri n) y us t y

- 24. Huang A, Patel S, McAlpine CS, Werstuck GH (2018) e role of endoplasmic reticulum stress - glycogen synthase kinase-3 signaling in atherogenesis. Int JMol Sci 19:6
- 25. Özcan U, Yilmaz E, Özcan I, Furuhashi M, Vaillancourt E, et al. (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313: 1137-1140.
- 26 Werstuck GH, Kim A.J, Brenstrum T, Ohnmacht SA, Panna E, et al. (2004)