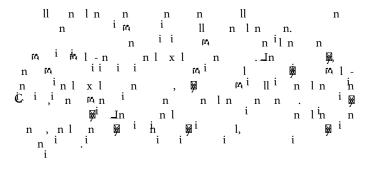

Mature T cell and Natural Killer Cell Tumor Allogeneic Hematopoietic Stem Cell Transplantation in the Kyoto Stem Cell Transplantation Group: Effect of Donor Source

Lewandowska D*


Abstract

Although allogeneic hematopoietic stem cell transplantation (allo- HSCT) is the crucial strategy to cure cases with mature T and natural killer (NK) cell tubercles leukemia, especially those with regressed/ refractory conditions, there's no agreement strategy for patron selection. We retrospectively anatomized the issues of allo- HSCT in 111 cases in 15 Japanese institutions as amulti-institutional common exploration design. Thirty- nine cases entered bone gist or supplemental blood stem cell transplantation from a f liated benefactors (rBMT/ rPBSCT), 37 entered BMT/ PBSCT from unconnected benefactors (uBMT/ uPBSCT), and 35 entered cord blood transplantation (CBT). Overall survival (zilches) and progression-free survival (PFS) at 4 times were 42 and 34, independently. The accretive frequentness of relapse and nonrelapse mortality was 43 and 25. In multivariate analysis, CBT showed similar zilches with rBMT/ rPBSCT(rBMT/ rPBSCT versus CBT hazard rate(HR),1.63; P = .264) and better zilches compared with uBMT/ uPBSCT(HR,2.99; P = .010), with a trend toward a lower relapse rate(rBMT/ rPBSCT versus CBT HR,2.60; P = .010; uBMT/ uPBSCT versus CBT HR,2.05; P = .082). This superiority of CBT was more defnite in on- complaint

Material and Methods

Data Collection

*Corresponding author: Lewandowska D, Department of Transplantation Medicine and Nephrology, Medical University of Warsaw, Poland, E-mail: Lewandowska_D@dl.co.pl

Received: 30-Jan-2023, Manuscript No: TROA-23-89960, Editor assigned: 01-Feb-2023, PreQC No: TROA-23-89960 (PQ), Reviewed: 14-Feb-2023, QC No: TROA-23-89960, Revised: 18-Feb-2023, Manuscript No: TROA-23-89960, Published: 23-Feb-2023, DOI: 10.4172/troa.1000162

Citation: Lewandowska D (2023) Mature T cell and Natural Killer Cell Tumor Allogeneic Hematopoietic Stem Cell Transplantation in the Kyoto Stem Cell Transplantation Group: Efect of Donor Source. Transplant Rep 8: 162.

Copyright: © 2023 Lewandowska D. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Cases

nkanl l (m)
filinⁱⁱ m n linm/l mⁱ
nⁱn. llliⁱm/nmⁱ
, ⁱllkan kai
, ⁱllkan kai
i ii

Endpoints and Delineations

n 11 mal n 1 lⁱl n n ln ll ⁱn nⁱm n/fin n n in i_{pa}_{n} n. l Man 1 1 n), n

Statistical Analysis

iji l nn i n ήM n ĺп n l n 1 X l n n n n n n M M M] n fi n n h n nn m nn n ll \mathbf{X} į n M n i n n(ⁱ i n n lⁱ n (n 🛱 11 n l n n n n 1 14 na nh m n 'n. in h n ipa PA PA i n n nn ni i n $n \quad l^{\ i}$ n M n lⁱn n l i n İl M 1 nn

Page 3 of 3

- 3. Li Y, Wu H, Jiang X, Dong Y, Zheng J, et al. (2022) New idea to promote the clinical applications of stem cells or their extracellular vesicles in central nervous system disorders: Combining with intranasal delivery. Acta Pharm Sin B 12: 3215-3232.
- Khosravi N, Pishavar E, Baradaran B, Oroojalian F, Mokhtarzadeh A, et al. (2022) Stem cell membrane, stem cell-derived exosomes and hybrid stem cell camouf aged nanoparticles: A promising biomimetic nanoplatforms for cancer theranostics. J Control Release 348:706-722.
- Wu HH, Zhou Y, Tabata Y, Gao JQ (2019) Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. J Control Release 28: 102-113.
- Ji B, Cai H, Yang Y, Peng F, Song M, et al. (2020) Hybrid membrane camoufaged copper sulfde nanoparticles for photothermal-chemotherapy of hepatocellular carcinoma. Acta Biomater 111: 363-372.
- Wang M , Xin Y , Cao H , Li W , Hua Y, et al. (2021) Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery. Biomater Sci 9:1088-1103.
- 8. Xia Q, Zhang Y, Li Z, Hou X, Feng N, et al. (2019) Red blood cell membranecamouf aged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B 9: 675-689.
- Shin MJ, Park JY, Lee DH, Khang D (2021) Stem Cell Mimicking Nanoencapsulation for Targeting Arthritis. Int J Nanomedicine 16: 8485-8507.
- Vasanthan V, Hassanabad AF, Fedak PWM (2021) Commentary: Cell therapy for spinal regeneration-implications for recovery after complex aortic surgery. JTCVS Open 24: 45-46.