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6-OHDA model shows many biochemical and pathological
similarities to human PD, and can closely simulate the DA decrease,
loss of DA neurons, and some neurobehavioral defects. However, the
main motor disorder observed in this model is lateral rotation, which is
not fully consistent with the common clinical symptoms of human PD
such as static tremor, weakened motor function, and muscle rigidity.
Further, the pathological characteristic of Lewy Body (LB) formation
is not observed. Despite these limitations, this model has been widely
used, because of easy availability, low cost, and stable and lasting
behavior changes, to confirm the efficacy of anti-PD complexes,
evaluate the therapeutic effect of neurotropic factors, and more. This
model has some additional advantages: the rotation behavior induced
by 6-OHDA can be quantitatively evaluated, and this model is the
only PD model in which quantitative detection on behavioral changes
is possible. Moreover, complete or partial substantia nigra striatum
bundle damage can be induced in the unilateral 6-OHDA model by
adjusting the dose and site of administration individually or
simultaneously, to simulate the pathological changes in patients with
PD in the early, middle, and late stages. This offers a solution to the
high mortality observed in the bilateral total brain injury model, and
also allows the use of the undamaged hemisphere as a control in each
model animal.

3-Nitrotyrosine (3-NT) model: The nitrite peroxide anion
(ONOO-) is a prominent reactive nitrogen species involved in
oxidative stress in vivo. It nitrifies free tyrosine residues or tyrosine in
protein structures to produce 3-NT, which can cause protein
denaturation, functional changes, and eventually cell damage [11-14].
At present, 3-NT is considered a relatively specific marker of
oxidative stress. Several patients with neurodegenerative diseases
including PD have shown elevated levels of 3-NT in the brain,
suggesting that protein nitrification could play a role in PD
neurodegeneration. Intra striatal injection of free 3-NT resulted in
decreased TH-positive nerve endings, decreased DA neurons in the
substantia nigra, and abnormal behavior in mice, suggesting that 3-NT
can induce neurodegeneration in animal models. The 3-NT model is
an acute model, and it is not clear whether the protein aggregation and
emergence of intracellular inclusion bodies observed are related to PD.
However, this model is an oxygen stress PD model, and could be
valuable in exploring the pathogenesis and developing treatment
methods against the stress-induced aspect of PD.

Biological toxicity models
Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) model:

MPTP is converted to the Methyl-Phenyl Pyridine ion (MPP+) by
Monoamine Oxidase (MAO)-B. MPP+ has a high affinity for the
Dopamine Transporter (DAT), and can be transported by DAT to DA
neurons, where it inhibits oxidative phosphorylation by selectively
inhibiting the activity of mitochondrial complex I, causing
mitochondrial dysfunction and Reactive Oxygen Species (ROS)
accumulation, and eventually DA neuron degeneration by necrosis or
apoptosis. MPTP treatment simulates PD in several species including
mice, dogs, and primates. The toxicity of MPTP is different in
different species; the highest sensitivity is observed in humans and
primates, followed by mice. Rats and guinea pigs have a high
tolerance to MPTP, and not preferred for use as MPTP PD models.
MPTP can be administered by several methods including brain
stereotaxic injection and systemic administration. The most commonly
used systemic administration methods are subcutaneous, intravenous,
abdominal, or intramuscular injection. Single intraperitoneal injection
of MPTP only reduces TH expression without the loss of SNpc DA

neurons. Primate MPTP models can induce clear, persistent, and 
irreversible behavioral responses, pathological and biochemical 
changes, and responses to drugs (including adverse reactions) similar 
to those observed in patients with PD. They are therefore the most 
ideal PD animal model. However, their application is limited by the 
availability and cost of primates. Rodents have the advantage of 
availability, ease of maintenance, and low cost, and the behavioral 
changes after MPTP treatment have a short duration and can be 
completely reversed. Therefore, the mouse model is a classic model for 
exploring the molecular pathway of PD neuronal death and evaluating 
the efficacy of neuroprotective agents. The monkey model is mainly 
used to identify the behavioral aspects and symptoms of PD, and is 
typically used in the last stage of PD treatment research before testing 
in humans [14-23]. There have been reports on the production or 
absence of LBs-like inclusions in MPTP models. Low-dose MPTP is 
likely insufficient to promote the formation of LB’s. The formation of 
inclusion bodies may be related to an increase in lactic acid levels in 
the brain of MPTP-treated mice, because it can activate AMP-activated 
protein kinase and promote the accumulation and phosphorylation of α-
synuclein.

The advantage of the MPTP model is that it can accurately simulate 
PD-related movement disorders, and the neurons of substantia nigra 
and striatum are highly sensitive to MPTP. This model also reflects the 
inhibition of mitochondrial respiration during PD pathogenesis. The 
disadvantages include the high mortality, and the variations produced 
by different drug dosages and methods on the modeling results. It is 
also difficult to observe the production of LBs, and the behavioral 
dysfunction and substantia nigral lesion of the mouse model can be 
reversed quickly, making it difficult to simulate the characteristics of 
PD as a chronic neurodegenerative disease. Drinkut et al., used the PD 
model of MPTP mice with deficiency of the tyrosine kinase receptor 
Ret and overexpression of Brain-Derived Neurotrophic Factor 
(BDNF) in the striatum. Immunohistochemistry (IHC) and Enzyme-
Linked Immunosorbent Assay (ELISA) were used to detect the 
number of TH and Nissl-positive substantia nigra neurons. 
Quantification of DA fiber density and determination of DA content in 
the striatum was performed by HPLC [20]. This confirmed that the 
lack of Ret completely offsets the neuroprotective and regenerative 
effects of BDNF on the DA energy system in the midbrain in the 
mouse PD model. Thus, Ret signaling is likely necessary for BDNF to 
prevent and compensate for the degradation of the DA system and Ret 
activation is the main mechanism underlying the effects of BDNF in 
the treatment of PD.

Rotenone model: The agricultural insecticide rotenone is a highly 
lipo-soluble neurotoxin that can easily penetrate biological barriers 
including the BBB. It can selectively destroy substantia nigra striatum 
DA neurons by inhibiting the activity of mitochondrial respiratory 
chain complex I and disrupting the mitochondrial respiratory chain, 
resulting in ROS production and mitochondrial dysfunction.

The Rotenone model reproduces several anatomical, neurochemical, 
neuropathological, and behavioral characteristics of human PD, 
including the accumulation of



induction of  α-synuclein. inclusion bodies similar to LB’s in surviving 
DA neurons and the simulation of neuropathological features of LB’s 
in substantia nigra neurons, which are lacking in the 6-OHDA and 
MPTP models. Further, rotenone is easier to administer than 6-OHDA 
owing to its lipophilicity, and can be administered by gavage, 
subcutaneous injection, intravenous injection, and intraperitoneal 
injection. Rotenone exposure is considered a health hazard; therefore, 
chronic subcutaneous injection with an osmotic pump is the most 
common drug delivery scheme. Different animals show different 
relativities to rotenone, which makes the amount, location, and degree 
of DA melanocytic striatum damage in the rotenone model variable, 
with poor reproducibility. In addition, rotenone exposure can cause 
multiple organ damage, and high animal mortality.

Betarbet et al., established the rotenone PD model in 2000. They 
implanted Alzet micro osmotic pumps subcutaneously into the back of 
rats, and performed low-dose intravenous injections of rotenone (3 mg/
kg/day) for 33 days [21]. They observed selective degeneration of DA 
neurons in the striatum, and the rats exhibited characteristic PD 
features including dyskinesia, flexion posture, gait instability 
sometimes with rigidity, and tremors, and LB-like -nielcunys-
positive inclusion bodies. However, rotenone (3 mg/kg/day) 
administered subcutaneously to rats for 28 days caused no damage to 
DA neurons and caused extensive toxicity to peripheral organ. 
Intracerebral injection of rotenone could be used to facilitate the 
expression and aggregation of DA neurons and α-synuclein in the 
SNpc and progressive neuronal, without related peripheral toxicity.

Miyazaki et al., chronically exposed C57BL/6J mice to low-dose 
rotenone (2.5 mg/kg/day) for four weeks by subcutaneous 
implantation of an osmotic minipump to generate a rotenone mouse 
PD model [22]. The model mice showed dyskinesia and 
gastrointestinal dysfunction. The dyskinesia was evaluated by open 



contralateral motor dysfunction [24]. The PD monkey model 
established by adeno-associated viral vector-mediated overexpression 
of α-synuclein closely mimicked human pathological changes. 
Injection of synuclein into the brain of rodents and non-human 



Conclusion
Several different animal models for the pathogenesis of PD have

been developed, and each has its advantages and disadvantages.
Substantive substantia nigra striatum degeneration is common, and the
motor symptoms of PD have been accurately replicated. Neurotoxin
models, such as the 6-OHDA, MPTP, and rotenone models, have
features consistent with the pathological characteristics of human PD.
Genetic studies have elucidated the genetic principles and
pathogenesis of PD. The neurotoxin models simulate the late stage of
PD, and are not ideal to study potential cures. These are more suitable
for the screening of symptomatic treatment drugs. Genetic models use
overexpression or gene knockout technology to simulate early stages
of PD. There is no progressive loss of DA neurons, which is more
helpful in evaluating the role of genes in PD.

In summary, any PD animal model cannot fully simulate the clinical
symptoms and pathological processes of PD. The choice of optimal
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