Multi-Element Detection in Green, Black, Oolong, and Pu-Erh Teas by ICP-MS

Qiang Han^{*}, Shozo Mihara, and Tatsuya Fujino

*Corresponding author: Qiang Han, Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo 192-0397, Tel: +81 042 677 3135; Fax: +81 042 677 3135; Email: han-giang@ed.tmu.ac.jp

Rec date: May 08, 2014, Acc date: May 21, 2014, Pub date: May 28, 2014

Copyright: © 2014 Han Q, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The contents of various elements in green, black, oolong, and pu-erh teas were measured by ICP-MS. The dependence of the dissolution rate of each element on the extraction time and the number of infusion was determined. By calculating the estimated daily dietary intake as a result of consuming 15 g of tea leaves a day, it was revealed that Cr and Mn exceeded the adequate intake for one day.

organic anion such as malate, citrate exist in the cytoplasm of the

\$ F N Q R Z O H G J H P H Q W

Qiang Han, et al. acknowledges the Asian Human Resources Fund from the Tokyo Metropolitan Government.

5 H I H U H Q F H V

- 1. Welna M, Szymczycha-Madeja A, Pohl P (2013) A comparison of samples preparation strategies in the multi-elemental analysis of tea by spectrometric methods. Food Research International 53 922-930.
- 2 Cao H, Qiao L, Zhang H, Chen J (2010) Exposure and risk assessment for aluminium and heavy metals in Puerh tea Sci Total Environ 408 2777-2784.
- 3 Walczyk T (2001) The potential of inorganic mass spectrometry in mineral and trace element nutrition research. Fresenius J Anal Chem 370:444-453
- 4. Salahinejad M, Aflaki F (2010) Toxic and essential mineral elements content of black tea leaves and their tea infusions consumed in Iran. Biol Trace Elem Res 134: 109-117.
- 5. Mehra A, Baker CL (2007) Leaching and bioavailability of aluminium, copper and manganese from tea (Camellia sinensis). Food Chemistry 100, 1456-1463

- 6 Pytlakowska K, Kita A, Janoska P, PoÅ, owniak M, Kozik V (2012) Multielement analysis of mineral and trace elements in medicinal herbs and their infusions Food Chem 135 494-501.
- Mossion A, Potin-Gautier M, Delerue S, Le Hécho I, Behra P (2008) Effect of water composition on aluminium, calcium and organic carbon extraction in tea infusions. Food Chemistry 108: 1467-1475.
- 8 Street R, Drabek O, Szakova J, Mladkova L (2007) Total content and speciation of aluminium in tea leaves and tea infusions. Food Chemistry 104: 1662-1669.
- 9 Chan EWC, Lim YY, Chew YL (2007) Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. Food Chemistry 102: 1214-1222.
- 10 Karak T, Bhagat RM (2010) Trace elements in tea leaves, made tea and tea infusion: A review. Food Research International 43 2234-2252
- Salahinejad M, Aflaki F (2010) Toxic and essential mineral elements content of black tea leaves and their tea infusions consumed in Iran. Biol Trace Elem Res 134: 109-117.
- 12 Lv H-P, Lin Z, Tan J-F, Guo L (2013) Contents of fluoride, lead, copper, chromium, arsenic and cadmium in Chinese Pu-erh tea. Food Research International 53 938-944.
- 13 Sofuoglu SC, Kavcar P (2008) An exposure and risk assessment for fluoride and trace metals in black tea. J Hazard Mater 158: 392-400

Page 4 of 4