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Abstract

Bovine tuberculosis diagnosis is one of the main challenges faced by animal and public health systems. The
incidence of M. bovis infections remains undefined in developed countries. So it is necessary to carry out an
extensive study and surveillance to determine the status of bovine tuberculosis as an urgent need for control
eradication program. Furthermore, developed countries, microbiological (bacteriological) and immunological
(histochemistry) techniques are still used, making more difficult to homogenize epidemiological knowledge of bTB.
Recent reports describing the potential of microarray technology not only to explore subunit vaccine agents
(biomarkers), but to pinpoint immunomodulation, and signatures in the journey of pathogen interaction with the host
in bovine tuberculosis. Omics and next generation high-throughput technologies have risen as promising tools that
will enable translational research (development of prognostic and diagnostic methods with high accuracy and
sensibility) and in depth molecular analysis even at single cell level to underpin dynamics in the transcripts
regulation of the host response in bTB.



What We have in Terms of Detection and IdentiẐcation
of M. bovis

In the last decades, a huge of group have been focused in the
development of molecular detection of M. bovis which in general
terms started with isolation from tissue homogenate with lesion,
seeding in Middlebrook brook solid medium supplemented with
OADC and THF followed by DNA extraction, nested PCR and
multiplex PCR amplification of specific regions of the M. bovis genome
[8-14], a screening test used to prevent infection and introduction of
disease in healthy herds. The application of the PCR technology, have
been seen as a reliable and accurate diagnostic development [8-14].
Moreover, real-time Multiplex PCR was standardized with reference to
Mycobacterium strains and was subsequently tested with 66 clinical
isolates [15-17]. The sensitivity and specificity of the designed primers
were for each one as follows: 100% for MTC, M. abscessus,
M.fortuitum, M. aviumcomplex, M. kansasii, and M. gordonae. While
the sensitivity and specificity of the primers designed for the genus
Mycobacterium were between 96 and 100% [15-17]. By other hand,
epidemiological analysis using techniques such as spoligotyping,
VNTRs, RFLPs, for typification of M. bovis substrains and for
simultaneous differentiation of other members of the Mycobacterium
complex with ther mycobacterial species not included in the complex.
Non-tuberculous mycobacterial species (NTM) that may have a
clinical significance and interference with the detection and
identification of M. tuberculosis [18-20] were analysed. Thus, MTBC
and NTM were simultaneously evaluated in respiratory specimens
using real-time PCR multiplex and RFLPs. and the Geno Blot Advan
Sure Mycobacteria trial (LG Life Sciences). The data obtained using
this approach, is that species commonly detected in mixed cultures
were M. intracellulare (29.0%) and M. abscessus (29.0%) [18-20] to
carry out a rapid and simultaneous detection of the M. tuberculosis
complex (MTC), as well as of differentiation with M. bovis; a multiplex
assay based on microspheres was developed using xMAP technology
[21]. Briefly, these methods detects 4 target sequences, including the
insertion-specific elements IS6110 and IS1081 of the MTC, a specific
fragment of 12.7-Kb for M. tuberculosis, and an uninterrupted
sequence of 229 sub specific



of the species, the macrophage gene expression program is different
even both pathogens share 99.5% homology, they still have some
percentages of different routes depending of the host human or bovine.

Proteomics
Proteomics is also a powerful tool that should be integrated to the

study of bTB [45], to deep insight in protein-protein interactions, to
characterize proteins that suffer post-transductional modifications, to
study stability, abundance of key role of proteins, glycoprotein, when
and how are expressed and migrate, protein patterns and if the
proteome overall at the level of cells (macrophages, dendritic or
lymphocytes cells) or tissues are affected in response to M. bovis
infection. All these issues can be studied, by spectrometric mass
(SELDITOFF) [27,45]. Moreover, recent research in this aspect
indicate that the knowledge of the antigenic targets of T cells in bTB as
well as the increasing knowledge of the subset of T cells and their
interactions with infected macrophages with M. bovis can help for the
development of better methods of control of disease. In biologic
systems based in the integration of data generated by omics studies are
a potential approach that can be used to identifiy transcriptional gene
signatures to predict or to correlate parameters of protection in
vaccinated calves versus unvaccinated, and also 188 to predict
vaccination protocol effectiveness, until now mostly applied to human
tuberculosis [26,27,31,45,46] (Figure 1).

Conclusion
Despite of the development and improvement of the DNA

technologies for diagnostic and prognostic test, in the last decade there
have been a raise in the technologies of the new generation which
certainly are giving an enormous advance either to epidemiological
molecular studies as well as in the knowledge of the epigenetics and
deep insight in the knowledge of mutations, genetic markers (SNP),
biomarkers, definition of spectrum of disease. Omics technologies and
third next generation high-throughput technologies have emerged as a
potent technologies that cover the totality of the genome wide studies
and importantly the functionality and dynamic of the genomes,
transcriptomes, and proteomes that will enable to integrate the
complete and define as it was possible to determine for humans, the
landscape in the spectrum of the infectious disease, the progression
and/or the genetic predisposition to mycobacterial diseases for (Figure
1) and make feasible translational research.
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