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Material and Methods
Study cohort

We conducted a retrospective study across two independent 
institutions (Stanford University [Site 1] and Vanderbilt University [Site 
2]) after the IRB approval. The inclusion criteria were: 

• Pathologically confirmed diagnosis of the following pediatric 
posterior fossa tumors: medulloblastoma, pilocytic astrocytoma, 
or ependymoma,

• Patients were aged 1 day to 19 years, and 

• Hematoxylin and Eosin (H&E) glass histology slides were 
available for review by a neuropathologist. Patients were excluded 
if the tumor histology diagnosis was unclear. 

Histology dataset

Neuropathologists from each site independently viewed individual 
histology slides under a microscope at 20× and captured 4800 × 3600 
pixel screenshot images with 72 × 72 dpi resolution centred over a tissue 
region representative of the brain tumor. Effort was made to reduce 
image capture of normal tissue, white space, and processing artifacts. 

Dataset distribution for training

The data were stratified by tumor type to ensure an equal distribution 
of tumor types in both the training set and validation set. For each site, 
80% of the data served as training and 20% was withheld from the 
training set to serve as a test set to assess the final model performance. 

Experimental overview

We conducted the following experimental approaches: 

Phase 1: Develop a deep learning algorithm using solely Site 1 data 
and test its performance on test sets from Site 1 and Site 2.

Phase 2: Fine-tune the best performing model from Phase 1 using 
a subset of the Site 2 cohort and assess model performance on test sets 

from Site 1 and Site 2.

Model architecture

We used ResNet architectural backbone pretrained on the Image 
Net dataset, a compilation of over 14 million images of everyday 
objects [7,8]. Due to the relatively small cohort size, we used the 
smallest available pretrained architecture with 18 layers to reduce risk 
of overfitting. The pretrained ResNet-18 architecture was modified to 
classify the three PF tumor classes: PA, EP, MB.

Image pre-processing

Pixel values were normalized per PyTorch pretrained model 
guidelines [9]. All images contained three (i.e., RGB) color channels. 
We performed several data augmentations for training. Each image 
used for model training had a 50% probability of rescaling to 224 × 224 
dimensions or random cropping of an unmagnified 224 × 224 sized 
original image. In addition to these rescaling options, each image in the 
train set had a 50% probability of vertical or horizontal flip. Validation 
and test set images were rescaled to 224 × 224 to allow the model 
to analyze the image but were not otherwise manipulated; no data 
augmentations were applied to validation or test set images.

Model training

All models were trained using the Python 3.6 programming 
language and the PyTorch deep learning framework and a NVIDIA 
TitanXp Graphic Processing Unit with 12 GB of memory [9]. During 
training, all layers of the model, including the pretrained convolutional 
layers, were fine-tuned on the histology training data and trained to 
minimize classification cross entropy loss. The Adam optimizer was 
used to update the weights of the model with each iteration [10]. We 
conducted a two-phase experimental approach, as shown in Figure 1. 

Phase 1: Develop a deep learning algorithm using solely Site 1 data 
and test its performance on test sets from Site 1 and Site 2. In Phase 
1, during which the model only had access to Site 1 training data, the 
model was trained for 10 epochs with a batch size of 64 images and a 
learning rate of 0.001. Random majority subset (80%) of data from Site 
2 served as the test set.

Figure 1:  Model architectures of medulloblastoma; astrocytoma; ependymoma.
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Phase 2: Fine-tune the best performing model from Phase 1 using 
a subset cohort from Site 2 and assess model performance on test sets 
from Site 1 and Site 2. In Phase 2, during which the model was further 
fine-tuned on Site 2 training data, the model was trained for 5 epochs 
with a batch size of 64 images and a learning rate of 0.0001. Here, a 
random minority subset (20%) of data from Site 2 was used to fine-
tune the best performing model from Phase 1. Similar to Phase 1, the 
majority subset (80%) from Site 2 served as test set to determine the 
model performance.

Each model was trained with 5-fold cross validation, using a 
20% proportion of the training set as the validation set. During final 
evaluation, the model with the lowest total loss was evaluated on the 
test set to gauge performance. 





https://www.sciencedirect.com/science/article/abs/pii/S0733861918312064?via%3Dihub
https://link.springer.com/article/10.1007/s00401-016-1545-1
https://link.springer.com/article/10.1007/s00401-016-1545-1
https://www.sciencedirect.com/science/article/abs/pii/S1538544216300165?via%3Dihub
https://academic.oup.com/neuro-oncology/article/18/suppl_5/v1/2590014?login=false
https://academic.oup.com/neuro-oncology/article/18/suppl_5/v1/2590014?login=false
https://academic.oup.com/neuro-oncology/article/18/suppl_5/v1/2590014?login=false
https://academic.oup.com/neuro-oncology/article/5/3/197/1061836?login=false
https://academic.oup.com/neuro-oncology/article/5/3/197/1061836?login=false
https://academic.oup.com/neuro-oncology/article/5/3/197/1061836?login=false
https://onlinelibrary.wiley.com/doi/10.1002/pbc.26709
https://onlinelibrary.wiley.com/doi/10.1002/pbc.26709
https://onlinelibrary.wiley.com/doi/10.1002/pbc.26709
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://projet.liris.cnrs.fr/imagine/pub/proceedings/CVPR-2009/data/papers/0103.pdf
https://projet.liris.cnrs.fr/imagine/pub/proceedings/CVPR-2009/data/papers/0103.pdf
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1412.6980
https://www.frontiersin.org/articles/10.3389/fmed.2019.00185/full
https://www.dovepress.com/deep-learning-based-multi-class-classification-of-breast-digital-patho-peer-reviewed-fulltext-article-CMAR
https://www.dovepress.com/deep-learning-based-multi-class-classification-of-breast-digital-patho-peer-reviewed-fulltext-article-CMAR
http://www.annclinlabsci.org/content/49/2/153.full.pdf
http://www.annclinlabsci.org/content/49/2/153.full.pdf
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10140/101400O/Convolutional-neural-networks-for-an-automatic-classification-of-prostate-tissue/10.1117/12.2255710.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10140/101400O/Convolutional-neural-networks-for-an-automatic-classification-of-prostate-tissue/10.1117/12.2255710.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10140/101400O/Convolutional-neural-networks-for-an-automatic-classification-of-prostate-tissue/10.1117/12.2255710.short?SSO=1
https://academic.oup.com/jamia/article/20/6/1099/2909332
https://academic.oup.com/jamia/article/20/6/1099/2909332

	Title
	Abstract
	Corresponding Author

