

## Journal of Bioterrorism and Biodefense

## Abstract

Potent immunogenicit<sup>^</sup> and lack of prolonged transgene expression have made Adenoviruses (Ad) attractive viral vectors for vaccine development. The<sup>^</sup> possess a stable virion, allowing inserts of large foreign genes, the<sup>^</sup> can infect man<sup>^</sup> di erent cell t<sup>^</sup>pes and the transferred information remains epichromosomal, thus avoiding the risk of insertional mutagenesis. Preclinical and clinical results conclusivel<sup>^</sup> showed superiorit<sup>^</sup> of Adenovirus-vectored genetic vaccines, based on the most common human Adenovirus serot<sup>^</sup>pe 5 (Ad5), for the induction of T cell response. However, pre-existing immunit<sup>^</sup> to Ad5 has shown to blunt signi, cantl<sup>^</sup> the immunological response induced b<sup>^</sup> Ad5-vectored vaccines in rodents, non-human primates and in humans. Chimpan: ee Adenoviruses (ChAd) do not cause pathological illness in humans and antibodies against them have low/no seroprevalence in the human x

MM