

Pathology

Research Article

Open Access

Quantifying Induction/Inhibition Effects on Fuzuloparib Using a Physiologically Based Pharmaco-Kinetic (PBPK) model

Jingxi Li¹, Keheng Wu², Xue Li², Sihui Long¹, Zhou Zhou² Youni Zhao², Ranran Jia², Pingping Song³, Jack Liu² and Bo Liu¹

Abstract	
The model was verifed using the clinical study of fuzuloparib with moderate inhibitor fucons rifampicin. After validation, the model was used to predict the effects of the mild inhibitor fu	0
of efavirenz or fuvoxamine on fuzuloparib. The model predicted that the AUC the efavirenz and fuvoxamine were 0.71 and 1.14 times of the original, respectively. It is a significantly affects fuzuloparib exposure and should be avoided when used together with f 50 mg has no significant effect on fuzuloparib exposure. Higher doses of fuvoxamine increases of fuvoxamine increases of fuvoxamine increases of fuvoxamine increases.	uzuloparib. Fluvoxamine

Keywords: CYP3A; Inhibio; Ind ce; F 10 a ib; Pha ma- d g concen a ion of inhibio /ind ce on en me a ci i j Bood co ine ic/Pha macod na mic mode; D g-d gin e ac ion

Introduction

F to a ibi a PARP inhibi o inde enden i de eto ed b Jiang Heng i Medicine Co. L d fo ea ing o a ian cance and o he orid cance in a ien i h ge mine BRCA m a ion ho ha e nde gone econd-ime o abo e che mo he a "Pecimicai ha macologicai e i ho ed ha f o a ib co d igni can jinhibi PARP ac i i jand m_0 go h in vivo and in vitro, and ha e igni can an i- m_0

e ec [1-6]. In he do e-e capae do aire 9 0 0 9 0 0 e38h o ha ma321 deo7 T TTJ0.10321 Td[(e(e)-5 (d ig)-4.9 (nA)53 (UCo)7 ()-4 5.2471 () o mach o 6 hake a mean, hive he e e o ne o e o AUC

C ma ce e in igni can [7]. In vitro d of f io a ib i h h man i e mic o ome c och ome P450 en me (CYP450) indica ed ha CY3A4/5 i he i'ma CYP i ofo m in or ed in he me abori m of f io a ib [6]. I i nece a o d he D g-D g In e ac ion (DDI) be een d g me abori ed b CYP3A4/5 and f io a ib. Fo e am le, en me ind c ion b d g^y and o he enobio ic chemicar e e di co e ed mo e han 30^y ea agent e ind c ion co id inc ea e he me abori m and crea ance of a ha macorogicar ac i e d g, reading o a ed c ion in ha macorogicar ac i i [8]. reading o a ed c ion in ha macological ac i i $\sqrt[n]{8}$.

d ain o edic he e ec of mild me aboni m-o a mine and mode a e me aboni m-ind ce efa i en T i iphibi o on f to a ib e o e_{ff} e PBPK model cce f u_{f} ediced he in ac of coma one (a mode a e inhibito) on d g b a e me about ed i main b CYP2C9 and CYP3A [9]. I i he i me o e hi moder o^y edic he ind ciona e cof an ind ce on a b a e i e f lo a ib. Do inggidance a ai o o ided fono ing he modenting die. In hi d_{y} he PBPK moder a e absi hed ba ed on he mechani m of DDI^{y} and he in ence of i e bood-

₀₋ and

*Corresponding author:

Received Editor assigned: Reviewed: Revised: Published: Citation:

Copyright:

$$CL_{int,h,induction} = CL_{int,h} \cdot (1 + E_{max} \cdot \frac{\frac{I_{h} \cdot f_{u}}{K_{pliver}}}{EC_{50} + \frac{I_{h} \cdot f_{u}}{K_{pliver}}})$$

 $\operatorname{CL}_{\operatorname{in},h}$ i he he a ic clea ance a e. $\operatorname{E}_{\operatorname{ma}}$ i he ma i m ind c ion a io. I_{h} i he he a ic concent a ion. f i he mbo nd f ac ion of he d gin he i e. K i e i he a io of i e o na ma concent a ion. $\operatorname{EC}_{\operatorname{so}}$ i he concent a ion of he ind ce a haff ma i m mind c ion.

In vitro and in vivo a a me e e e ed d ing modeling. In vitro da a de c ibed he h icoche mical o e ie and me aboi m of he d gm e d g' ab o' ion, di ib ion, and ei mina ion a a me e, ch a K_a, V_1, K_{12}, K_{21} , and , e e de i ed f o m in vivo da a. K_a i he ab o ion a e. V_1 i he cen a com a men of me. K_{12}/K_{21} i he ab o ion and ei mina ion a e of he i e com a men in he o-com a men model, and i he dera i me. When $K_{12}/K_{21}=0$, a one-com a men model a ed in he im aion.

Simulations of DDIs

No cinical die ha ebeen bi hed on hee ec of he mode ae ind ce efa i en o he mid inhibio o a mine on f o a ib. Ba ed on he do e info ma ion bi hed b Jiang Heng i Medicine Co. LTD [4], efa i en a o au a en 600 mg/da, n it he na ma concen a ion eached a ead a e, and hen f to a ib 50 mg a o au a en in combina ion. Fo' inhibio, o a mine a o au a en 50 mg/da, n it he na ma concen a ion eached a ead a'e, and hen f to a ib 20 mg a o au a en in combina ion. Fix heath men e e im na ed in boh die.

PBPK modelling so ware

The i d ed a eb-ba ed ra for $m B_2O$ in ratio o in rate d ge ∞ eith he ence of DDI. Ratio be een e ∞ e in and i ho DDI e e ao (ind ce o inhibito) e ecarc rated and com a ed i h crimical die (if a airabre). With he rote and e CI% (contractor ence and in min of 2.5%-97.5%, he geometic mean of an C_{ma} and AUC₀ e e carc rated. Change ha e e 2 ford e e contracted ignation.

Results

Parameters used in the PBPK model

Paamee ee ed o in nae ingred g na ma concent a ion o e a a a e he moder e fo mance a he beginning of modering e a amee e e adj ed o he ingred g moder be, and he e r a e ho n in Table in ed g i a med