Review on Bioremediation of Pesticides

Baba Uqab, Syeed Mudasir, Ruqeya Nazir*

Department of Environmental Sciences/Centre of Research for Development, University of Kashmir, Jammu and Kashmir, India

*Corresponding author: Nazir R, Department of Environmental Sciences/Centre of Research for Development, University of Kashmir, Jammu and Kashmir, India, Tel: +91-9419023191; E-mail: rugiaya.du@gmail.com

Received February 16, 2016; Accepted March 21, 2016; Published March 25, 2016

Citation: Uqab B, Mudasir S, Nazir R (2016) Review on Bioremediation of Pesticides. J Bioremediat Biodegrad 7: 343. doi: 10.4172/2155-6199.1000343

Copyright: © 2016 Uqab B, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Page 2 of 5

minimizing human exposure to pesticides and to maintain the fertility of the pesticides are easily degraded however some are recalcitran of the soils for proper productivity. ere is a dearth of studies relatedbecause of presence of anionic species in the compound. Beside to these issues in India Uttar Pradesh is the largest consumer followerdanophosphorus compounds, the Neonicotionoids are degraded by by Punjab, Haryana and Maharashtra. Regarding the pesticide shahe Pseudomonas species (Figure 2).

across agricultural crops, cotton account for 45% followed by rice (25%), chillies/vegetables/fruits (13-24%), plantations (7-8%), cereals/

millets/oil seeds (6-7%), sugarcane (2-3%) and other (1122/1)4].

Pesticide classi cation

e minor structural changes that fungi does to degrade pesticides and render them into nontoxic substances and release them into soil where it is susceptible to further degradation. e various fungi which

Pesticides encompass a variety of di erent types of chemicalle ve shown ability to degrade pesticides are given in Table 6. Pesticides encompass a valuery of di cional approximation of the second structural classi cation include organochlorine, organophosphorus, carbamates, nitrogen based pesticides [14].

Bioremediation history and use

Enzymes take part in key role in Biodegradation of any xenobiotics and are able to renovate pollutants to a noticeable rate and have prospective to restore polluted environment [18]. Enzymes are also involved in the degradation of pesticide compounds, both in the target

Bioremediation from it root meaning means to use microorganism@rganism, through intrinsic detoxi cation mechanisms and evolved to remediate/ destroy or to immobilize pollutant from environment metabolic resistance, and in the wider environment, via biodegradation [15]. Natural Bioremediation has been used by civilizations for they soil and water microorganisms., ,, theoretical oxygen demand treatment of waste water but intentional use for reduction of hazardou (JOD) enzyme is a representative of a much larger family of enzymes waste is more recent development. Modern bioremediation and use the application in the biocatalysis of environmentally relevant of microbes to consume pollutants are credited in part to Georgeactions. Fungal enzymes especially, oxidoreductases, laccase ar Robinson He used microbes to consume an oil spill along the coast of roxidases have prominent application in removal of polyaromatic hydrocarbons (PAHs) contaminants either in fresh, marine water or Santa Barbara, Calfornia in the Tale 1960.

Pesticide concerns P	esticide	Examples
Posticidos are not only toxis to humans but they nose a threat	secticide	
resticues are not only toxic to numans but they pose a timeat	rganophosphorus	Diazinon, dichlorvos, dimethoate, malathion, parathion
of surface and ground water pose a serious threat to surrounding	arbamate	&DUEDU\O SURSR[XU \$OGLFDUE PHWKI
ecosystems. e organochlorine and organophosphates cause tumors	rganochlorine	''7 PHWKR[\FKORU WR[DSKHQH PLUH[
irritability and convulsions [14]. Besides this organochlorine pesticide	yclodienes	Aldrin, chlordane, dieldrin, endrin, endosulfan, heptachlor
cause serious environmental issues due to Biomagni cations (Figure	erbicides	&KORURSKHQR[\ DFLGV KH[DFKORUREH
1: Table 3).	litrogen-based	Picloram, Atrazine, diquat, paraquat
Pesticide bioremediation methods)rganophosphates	Glyphosate (Roundup)
	ungicide	
e level of toxicity caused by the pesticides leads to the great need	itrogen-containing	7ULD]LQHV GLFDUER[LPLGHV SKWKDOL
for bioremediation. No doubt in some cases intrinsic bioremediation	Vood preservatives	&UHRVRWH KH[DFKORUREHQ]HQH
occurs because of microbes that are already present in pollute	dtanicals	Perethrin, permethrin
ecosystems, but it is also true that in some cases intrinsic bioremediation	mtimicrobial	Chlorine, quaternary alcohols
is not adequate. e requirements for the process of bioremediation of pesticides given by Ref. [14] are summarized in Table 4.	Table 2:	7\SHV RI 3HVWLFLGHV DQG ([DPSOHV IUF

Strategies for pesticide remediation

Pesticide pollution is a serious environmental problem and their remediation is necessary. Ideally treatment should result in destruction of the compounds without generation of intermediates (Table 5).

Bacterial degradation of pesticides

Bacteria species that degrade the pesticides belongs to genera degrade pesticides.

e complete biodegradation of the pesticide involves the oxidation of the parent compound resulting in to carbon dioxide and water, this provides energy to microbes. e soil where innate microbial population cannot be able to manage pesticides, the external addition of pesticide degrading micro ora is recommended. Degradation of pesticides by microbes not only depends on the enzyme system but also the conditions like temperature, pH and nutrients. Some

Citation: Uqab B, Mudasir S, Nazir R (2016) Review on Bioremediation of Pesticides. J Bioremediat Biodegrad 7: 343. doi: 10.4172/2155-6199.1000343

Page 3 of 5

S

Pesticide	Persistence (Half-life)	Health Effects
Aldrin	20 days to 1 year	Nervous system effects. Probable carcinogen. Large doses : convulsions, death. Moderate doses : dizziness, headaches, vomiting, uncontrolled muscle movement
Dichlorodiphe nyltrichloroethane (DDT)	2 to15 years	Nervous system effects (tremors, seizures); probable carcinogen
Chlordane	4 years	Nervous system, digestive system, liver effects. Headaches, irritability, confusion, weakness, vision problems, vomiting, stomach cramps, diarrhea, and jaundice for lower doses. Higher doses : convulsions and death.
Dieldrin	Up to 7 years	Nervous system effects. Probable carcinogen. Large doses: Convulsions, death. Moderate doses: Dizziness, headaches, vomiting, uncontrolled muscle movement.
Heptachlor	0.4 to 2 years	Nervous system damage, liver and adrenal gland damage, tremors

Table 3: +HDOWK HIIHFWV RI FRPPRQ SHVWLFLGHV IURP 5HI > @

Factor	Conditions required
Micro organisms	Aerobic or Anaerobic
Natural biological processes of micro organisms	Catabolism and Anabolism
Environmental factors	2[\JHQ FRQWHQW 7HPSHUDWXUH S+ (OHFWURQ DF
Nutrients	&DUERQ 1LWURJHQ R[\JHQ HWF
Soil moisture	25-28 % of water holding capacity
Type of soil	Low clay or slit content

Table 4: Requirements for the process of bioremediation of pesticides, from Ref. > @

Technology	Treatment time in months	Treatment media	FYacjU`YZÙW]YbWm	References
Bioremediation	3 (ex-situ)	Soil, sludge, ground water, sediments	Up to 99.8%	> @
Phyto remediation	3 (ex-situ)	Soil, sludge, ground water, sediments	Up to 80%	> @

Table 5: Technologies available for treatment of pesticide-contaminated sites.

Citation: Uqab B, Mudasir S, Nazir R (2016) Review on Bioremediation of Pesticides. J Bioremediat Biodegrad 7: 343. doi: 10.4172/2155-6199.1000343

Page 4 of 5

Species of fungi	Potential for degrading pesticide	Reference]
Flammulina velupites, Stereum hirsutum,Coriolus versicolor,Dichomitus squalens, Hypholoma fasciculare, Auricularia auricula, Pleurotus ostreatus, Avatha discolor and Agrocybe semiorbicularis	WULD]LQH SKHQ\OXUHD GLFDUER[LPLG FKORI	J⊁Q @ WHG	€ RUJ
White-rot fungi	+HSWDFKORU DWUD]LQH WHUEXWK\OD]LQH OL JDPPDKH[DFKORURF\FORKH[DQH (g-HCH), dieldrin, diuron, aldrin, DDT, etc.,	Q G D Q H > @	PHWC

Table 6:

Citation: Uqab B, Mudasir S, Nazir R (2016) Review on Bioremediation of Pesticides. J Bioremediat Biodegrad 7: 343. doi: 10.4172/2155-6199.1000343

 Hussain S, Siddique T, Arshad M, Saleem M (2009) Bioremediation and Phytoremediation of Pesticides: Recent Advances. Criti Rev in Env Scie and Tech 39: 843-907.

- Tayade S, Patel ZP, Mutkule DS, Kakde AM (2013) Pesticide contamination in food: A review. IOSR J Agri Vet Sci 6: 7-11.
- Burken JG, Schnoor JL (2003) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31: 1399-1406.
- 9. Zhang W, Jiang F, Ou J (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1: 125-144.
- Su C, Jiang L, Zhang W (2014) A review on heavy metal contamination in the soil worldwide:Situation, impact and remediation techniques. Environ Skeptics Critics 3: 24-38.
- de la Cruz E, Bravo-Durán V, Ramírez F, Castillo LE (2014) Environmental hazards associated with pesticide import into Costa Rica, 1977-2009. J Environ Biol 35: 43-55.

Page 5 of 5