

DOI:

Open Access

Keywords: CO_2 , (a, b, a, a, c); $CTSC \circ a = Tro (a, a, a, a, a, a, a, a, c); CTSC \circ a = Tro (a, a, a, a, a, a, a, a, c); <math>CO_2$, (a, a, a, c); CO_2 , (a, a, a, c); CO_2 , (a, c); (

Introduction

Citation: Hamida H, Belkhatir A, Tchouar N (2015) Technological Hazards of CO₂ Sequestration Activity State of the Art and Experience Feedback at Krechba (In Salah) Pilot Site. Ind Chem 1: 109. doi: 10.4172/2469-9764.1000109

(1,1), (1,1),

Research into reliable outlook for the carbon sequestration process

Trone a, i 2012 a a algaira de la desta $= CO_2 + \cdots + a = a + a = a + c = a +$ 9 ω 9 τ. τ. τ. τ. 9 μαμαρια, ca μαλαμάτι τα μαριαματικα cuanti 1.9 μω 9 μα. ω 9 τ.τ. 9 μα 9 μ.μ. μαματικτικά του βιαματικό τα μεγκιτικά το CO_p bita, αμά antia, e Carriera a baina antia, an an Carriera . ing a 🙈 , ingo i 🛥 🙈 an 🖃 o an 🙈 o at acit, annan a 🖉 a i 🦯 and, the state of and any distance, it at abases a tradition of a state of a state of the state بود، سالشور، , a سامه ab السام دوسال الا موجعة الم i .=o(...a ,=c,) a ,=c,) (B,(a Ma (C) 🛋 a م G مرم عشر a، الأسعيد R ب a, c (BRGM) [13], مناحب APE-CO, Marce (Salanan and Anna an Later Scala and a tr 🖃 aller (, all), call, ball en lie, a 🛲 e b 🦉 🖛 (all abr a te ma ma a te d'anna - a te te te te te te te te anna a te anna a a of annumation of an and CO₂, at a of an above / EC (Canada a and acca a git it a manada a a a ar o man a galanti, ar yi an tisi lan isan bari mani BRGM O(1), (13) and (12) a , a ULT mat CO_2 , (13) and (12) a , a ULT mat CO_2 , (13) and (12) a $\mathbf{CO}_2 \mathbf{u} = \mathbf{a}_1 \mathbf{u}_2 \mathbf{u}_3 \mathbf{u}_4 \mathbf{u}_5 \mathbf{u}_6 \mathbf{u}_6$

INERIS [6], \mathbf{a} , \mathbf{a} , \mathbf{a} , \mathbf{c} ,

e return of experiments Site Krechba at In-Salah

In A (1) and the set of the set

Citation: Hamida H, Belkhatir A, Tchouar N (2015) Technological Hazards of CO_2

Pre-injection risk register	Risk highlighted during operation	Operational Monitoring Responses
-Injection well problems -CO ₂ breakthrough to hydrocarbon production	-migration to the north	-3D seismic; InSAR, shut-in of well KB 502, integrated modeling.
well -Vertical leakage	-Vertical leakage	-Reduction og injection, pressure, seismic reprocessing,
-Wellbore leakage -Legacy well integrity	-Well integrity at KB-5	microseismic data, integrated modeling. Plug-and-abandon KB-5, well- bore studies.

Table 2: Key risk responses.

A (1 a) 🚄 (a,) 📬 L b a bac, ba ac aba ao CO. ai 🤮 ac/ 🚬 🌗 ac. •,) (L a a 1 **. . . .** ac . (F. 7 a, 8).

BRGM cat _ ct 2012, a _ **___**___ • • • CO₂ a _a, , , a, , c.) † , • 1 a/a 1 Ju Aba Sel al Ne ile Kic ba , and BRGM I. Sa a a 🛋 👞 (a/ a i . O i i) a 🕛 🚄 a i a i Cal Ce b BRGM, a ... [19]. _____ a_ a_ . . . ____ **.**

▲ B• / a →Oc •b• 26, 1986 O a 🚚 💷 b 🖭 . La - A 📲 a 200.41 and i an 80-41 1 b 🛋 a ai acar Ha B٩ licana Qa .a. A 👘 🚛 o a 🚄 a 🛃 acc 🛲 accin a a lu 0.41 **U** OKN-32 | a . A 1 41), а ar 🛋 1987, 🕕 🤵 a 🖣 🗎 • OKN-32a a a [a n a b ∎ 320.4 r c∎ a **,** a (¶ Q a a a 🚛 a 🖉 🙏 🚛 🗸 🖌 1 a a 0 🖬 🛲 a (¢ a !) can am () a ? ay am a ab, , y am -a a d 📭 🚛 - 🖛 a

Conclusions

Acc II II II II II II A Pari, II Camai O arii (IPCC), I 🖌 b a a ab а 2030 a a æ . b 🛃 2050. a ac a ao a CTSC a С а CCS a а a o i a i , abi c a •0 a a a CI а Ο. a a ac $9 \mod b \mod 9 \mod 0$, $a = 5 \mod 9 \mod 0$.

Figure 7: Image satellite InSAR illustrating the deformation of the surface to Krechba (Iding and Ringrose).

-`%), ž, *)' Ž

References

- 1. ADEME (2013) Captage et stockage géologique du $\rm CO_2$ (CSC). Les avis de l'Ademe 1-5.
- 2. Dodds K (2009) In Salah CO₂ JIP: Status and overview. Presented at the 5th IEA GHG R&D Programme Monitoring Meeting, Tokyo, Japan.
- 3. L'INERIS (2011) modélise les risques du stockage de CO2 en aquifère salin :Beaucoup d'inconnues relatives aux impuretés encore à déterminer. 1-2.
- INERIS (2010) État de l'art sur l'évaluation des impacts, sanitaires et environnementaux du stockage Géologique de CO₂. Rapport d'étude INERIS-DRS-10-100825-02286D, EUREKA.
- INERIS (2010) État de l'art et analyse des risques pour un stockage de CO₂ en aquifère salin. Rapport n°1: les risques en phase d'injection.
- INERIS (2013) Retours d'expériences des incidents et accidents sur des sites d'exploitation ou de stockage en milieu souterrain- application au stockage géologique du CO₂ DRS-12-126009-13866-unique- 1397139450, Rapport d'études.

- Belkhatir A (2010) Systémie, complexité, lois du chaos et MCR-Nouveaux concepts et construits pour une science du danger en devenir. IFREI Paris. 1-27.
- Belkhatir A (2012) Secure gas transportation and distribution in urban areasafety system of gas network and urban planning. World gas conference IFREI Paris 2-6.
- Belkhatir A, Hamida H (2014) Une ingénierie système relativisée dédiée à la sécurisation du processus de piégeage du CO2 industriel, ouvrage collectif, Gestion des risques naturels, technologiques, Ed. Cépadues, France.

10.

- Rutqvist J, Vasco DW, Myer L (2009) Coupled reservoir-geomechanical analysis of CO2 injection at In Salah, Algeria. Energy Procedia1: 1847-1854.
- Ringrose P, Atbi M, Mason D, Espinassous M, Myhrer O, et al. (2009) Plume development around well KB-502 at the In Salah CO₂ storage site. First Break 27: 85-89.
- 13. BRGM, Bureau de la Recherche Géologique et Minière (2015).
- Wright IW, Mathieson AS, Riddiford F, Bishop (2010) In Salah CO₂ Storage JIP: Site Selection Management, Field Development Plan and Monitoring Overview. Energy Procedia 614-1000.
- Davies E, MacDonald B, McColpin G (2009) CO₂ Sequestration InSAR Monitoring Phase I: Archival Analysis of Well KB-502 In Salah/Krechba Field, Algeria. Pinnacle-MDA Report for JIP.
- 16. Mason D, Taylor M, Espinassous M, Zinner C, Keddam M, et al. (2010) In Salah Gas Joint Venture: Operating Experience for the CO₂ Carbon Capture and Storage Project in the Krechba Field, Algeria. Int. Conference on Greenhouse Gas Technologies GHGT-10, Amsterdam.
- Iding M, Ringrose P (2009) Evaluating the impact of fractures on the long-term performance of the In Salah CO₂ storage site. Energy Procedia 1: 2021-2028.
- 18. Mathieson A, Midgley J, Dodds K, Wright I, Ringrose P, et al. (2010). $\mathrm{CO}_{_2}$

Algeria. The Leading Edge.

 Smith J, Durucan S, Korre A, Ji-Quan Shi, Caglar Sinayuc (2010) Assessment of fracture connectivity and potential for CO₂ migration through the reservoir and lower caprock at the In Salah storage site. Energy Procedia 4: 5299-5305.