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Introduction

To this day, the extent and rates of &@nsumption and ATP
synthesis are generally determined in reactions initiated by adding
a large amount of ADP to oxidized mitochondria respiring in the
presence of respiratory substrates and ~230 yyL[OUnder in vivo
conditions, however, the concentration afi@side the cell is no higher
than 70 pM [2], and the process of ATP synthesis begins not with a
sudden increment in ADP concentration but with the binding gt®
mitochondria already charged with ADP.

In reality, the net synthesis of ATP only occurs during the very
short and extremely fast period of oxidative phosphorylation in which
O, is hyperbolically reduced to water at the level of the cytochrome aa
e process of ATP synthesis begins with the oxidation of cytochrome
ag by Q, that, driven by a net gradient of, Goncentrations, enters
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b) e hyperbolical processes of electron ow and,Gonsumption
precede the sigmoidal process of ATP synthesis. e amount pof O
consumed during the rst milliseconds of the reaction accounts for
more than 36% of the amount of, @itially present. e amount of
ATP formed during the same period only accounts for less than 10%
of totally formed.

c) e initial rate of O, consumption is higher than 1,700 nmols O
mint mg? of protein.

d) e rate of ATP synthesis during the fastest portion of the
reaction is close to 750 nmols mimg?protein.

e) e netsynthesis of ATP ceases when the amount gic@sumed
is only 53% of the initially present (2.42 out of 4.6 nmols O).

f) Under this in vivaconcentration of Qthe ATP/O ratio changes
from near zero to a maximum of 0.71 (1.71/2.42).

E ect of ADP concentration on the amount of Qconsumed
during the process of ATP synthesis

Data presented in Figure 2 show that the amount,afd@sumed
during the rst phase of the respiratory process, which is directly
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cytochrome ¢ and 100 nmols of ADP than in the presence of NADH
and 25 nmols of ADP, i.e., higher at the lowest than the highest E
Only at high levels of both,@nd ADP the rates of ATP synthesis can
attain values that are up to 3.6 times higher in the presence of NADH
than in the presence of cytochrome c.

E ectofthe E, and the concentrations of O

UM), ADP (<2.3 or 250 nmols) and cytochromg @l or 10 mg of
protein), the maximal rates of,@ptake exquisitely depend on all these
factors. us, in the same range of (concentrations the \, of O,
consumption is 105 pmoles mimg?! protein in reactions catalyzed by
homogenates of whole liver, and 500 umolestmig? protein in those

catalyzed by SMP.

Eectof E ,, O, and ADP concentration on the rates of ATP
synthesis

Data in Figure 4 show that the rates of ATP synthesis in reactions
catalyzed by RLM in the presence of either NADH or cytochrome c,
depend on all, the Eand the initial concentrations of,@0.46 to 12.5
uM) and ADP (25 or 100 uM). e rates of ATP synthesis in the presence
of extremely low levels of @re identical in the presence of cytochrome
c than in the presence of NADH. In the range pé@hcentrations from
0.46 to 11 pM, the rates of ATP synthesis are higher in the presence of
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in the presence of NADH and low levels of ADP (25 nmols). Only at
high levels of both Oand ADP the ATP/O stoichiometry can be close
to 2.4 times higher in the presence of NADH than in the presence of
cytochrome c.

E ect of the relative concentrations of Qand cytochrome
aa,on the amount of Q consumed during the process of ATP
synthesis

Figure 6 shows the e ect of the relative concentrations,airnd
cytochrome agon the respiratory process of, Gonsumption that is
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50 uM ADP [4]. Note that the net synthesis of ATP ceases at the time
that extremely fast phases of Gnsumption and cytochrome aa
oxidation cease. e extent of Hejection is not related to the synthesis
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