The Role of TP53 Gene Mutations in Oral Cancer: Implications for Early Detection, Residual Cancer Identification, and Surgical Outcomes

¹Department of Conservative Dentistry and Endodontics, University of Jaén, Spain ²Department of Oral Diagnosis and Radiology, University of Oviedo, Spain ³Department of Preventive Dentistry and Public Health, University of Valencia, Spain

3

Ą

X

Oral cancer frequently involves mutations in the TP53 gene, which encodes the p53 protein responsible for regulating cell growth and apoptosis. TP53 mutations impair the protein's ability to suppress abnormal cell proliferation and facilitate the development of malignancies. This study explores the impact of TP53 gene mutations on the progression and management of oral and oropharyngeal cancers. We review evidence suggesting that genetic testing for TP53 mutations can enhance early detection of oral cancers, identify residual tumor cells post-surgery, and predict the likelihood of tumor response to surgical interventions. By integrating these genetic insights, clinicians may improve

30-July-2024, DOI: 10.4172/2332-0702.1000440

Carlos M (2024) The Role of TP53 Gene Mutations in Oral Cancer:

T 7			1	_		C	arios	IVI (20	24)	The	Role	Of I	1953	Gene	iviuta	tions	in Ora	a Cano	cer.										
Ке			a :	Ĩ	P53				;		£1	;			21			_			_	_						_	
1		;	53	C	utcon	TE S	J Oral	Hyg H	ealth	n 12	440.			2	;			M			6	Ĭ.							
S		Ĩ.			; G						. X		Р	X					a		. 2	2.							
			٠т				© 202	24 Car	ios i Mai	vi. i n	IS IS	an of	pen-ac	cess	article	e aistri	buted	under	the										
			, 1	τε	erms c	of th	ie Cre	ative	com	mons	Attr	DUTIC	on Lice	ense,	whici	n pere	nits le ir	neque.	59 °i	cel	l la	eş	g la i	i					
T		d	сi	u	se, als	Strid	ution, a	and rep	oroa	uctior	n in a	ny m	eaium	i, prov	ided	the ori	ginai a	author a	and	R	57	5					157		
• •		υ,	•. 1	S	ource	are	credite	ed.									_ 11	'53			3	ă	1						
		2	2		, N ,		2		1			,								21	×1	. I		,		53	· ,		
									F 1						F 1					, 🖬		ļ	DNA	21	, 🖬				
X			M		3				,			X	3				,		Ň		λ.	ð .	В				,		
	1		, ,	·	TDES	2		TDE	2					5 151		21					M			1		53			
	- 191 F7	5			11933)	•	1193.	5	, ,	•			51	R	_			T		_		5	-	5	5		5	
							,			53		,				100 1001	2 C		• 1 /					м	51		TD		
	ĩ	1				a l						2				8					-		50	. IVI		· · · ·	11.	55	
			,	Ĩ		, й	DNA	A 🖬				λ.			, ,					_	30		53		,	4 · · · · ·	_ · ·		
53		1		? 1				,					2	1						3 1			, .				21		
Ň	Ň			2		1	F 1			a l	. N			TP5	53		3 1	? 1		2			Ι, ,	, 🖬				2	
51									N	53			<i>,</i>	11.				×1				1				21			
						2	104 , . 151	101		55		,					. I	3	X	-			3 1	X	. TI	253	A		
. , 199						84.	. 84	8	,							-	• •	-	5	M N	51	51	-	-	, M		. —	, 51 51	
XI.					. 1	I						.,									, i						,		
	×.						, .		1	21								1	•										
3 1		,	,	2						2			, 1			тр	3 C		d	53	D	ai	Е	ci					
	-										53					11.	55 00	ca	u	55	E .	CI	Т,	C. I					
	К	_			.	_				_	3		·			N	mal f	ci		f 5	3								
		21	Т	P5	3	2				2	2				. •	11	man			1 5	5								
G					TP	P 53	21				,	λ.		21		I	[2		1,	1	53							
							,	21						8			21		1									X .	
			×.			1			1	. F						DNA	A 150	8	5		T	M	R	,			6	1	
21										_			,				য় জ	י, שם הם הם		 Ra 1	 ଗ	, 0.		N	M		2	• • • • • •	
	50		M			· ·		R	·			,,,,				. •	au, , . 157	8 , D	INA		ац . т. А	57			88	. 3.	. 0	, 191	
			8			2		5		TD5 0		57	5							Dr	NA		,			, I		21,	
			. A	L		au ,		, . B		1P53		2	, . BU		3														
,				3			. ,				1		a l																
. 1	Ì			1	, .																								
Ba	ck	g		d	a d	Sig	i c	a ce																					
		U				U																							
0	e	ie	: 1	f	al ca	a c	e																						
		51	M			M		51	21					M															
	101	65	ଆରେ କ	, স		6	l ,	68 I	osi R	, . 31		R	, ज	., 1 1															
	4	,	61 6			·			2					. 84	•														
					•			, Ma ,	,																				
	. 1	R,	M						, ,	2				, 🖬															
			1			. (HPØ)			D,																			

- 14

Mecha im fTP53 m a i. TP53 Ĩ Ξă 2 2 2 1 R X 2 53 R) Ň 1 2 2 2 1 1 2 2 21 3. C.e.e.f.53d.f.c.i 21 53 TP53 D Ĩ. ' 2 DNA 🖬 🖬 , 2 1 **?**1 ۶. X M M 21 M Ξ. Ĩ 2 21 1 M **?**] Ň Ĩ 2 TP53 M a i . i O al a d O ha geal Ca ce. Fe e c a d e fTP53 m a i .

Page 3 of 4

Deci_i:

- Re id al di ea e de ec ed (%):
 Image: Comparison of the sector of the secto
- N e id al di ea e (%): R) a a TP53 21 R ы - al e: I 3 2 1 M R. TP53 . ×1 . 2 2

P edic i e Val e f TP53 M a i .

C ela i i h, m e . e, ge

TP53 Ĩ X 2 2 S 3 2 3 2 . 2 , ĭ A R. 2 . TP53 2 A . K R A 2 2 Ĩ 2 M N 3 A X TP53 A 2 **?**] a) 2 2 . F R A 2 . TP53-, 🖬 R) 2 2 2 ð, 6.

Cli ical A lica, i , a d F, , e Di ec, i ,

I .eg a i g TP53 .e .i g i . cli ical ac ice

Ι		TP53				,
				3	,	
		N			Δ,
			,.D ,		, TP53	
N				,		, . ,
X	, 🖬			A		,
		? 1				2
×	, 🖬 ,					, •
Р.	ec. f	e.	ali, ed m	ediciei a	ll ca ce	, •
Ρ.,	ec. f	e.	ali, ed m	a a edicieia 1 a a	al ca ce	
P .	ec. f	e. 1	ali, ed m TP53	edicieia I Di Di Di Di	licace Ilicace	
P	ec. f	e. 1	ali, ed m TP53	edicieia ISISI ISISI ISISI	B Icace B B B B B B B B B B B B B B B B B B B	
P	ec. f	e. 1	ali, ed m TP53	edicieia BBB BBB , BBB	I ca ce I a ce II a B II II a B II II II a II	2 ·

Re la dDi c... i

Fe e c a d e fTP53 m ai.

	1	? 1	X	, .									Ň	Ĩ	
	F 1		21			,		TPS	53	X		S		X	,
	10	0					, (65% .			2	,			
TP53								,					2		,
			2	,	. 1			1	, .		1			. ,	
	,					DNA	-					53			,
	,		? 1		.,	-, -				7					

A. cia i i h di ea e ge.i

TP53 🖬 📓 📓

A 2 DNA-2 Â N A 53 R) TP53 Đ. 2 **TP53** 2 N **TP53** 2 1 Ĩ N 21 2 9

Ad a ce i ea l de ec i

TP53 A 2 Ĩ. N ΞĨ 2 M 1 1 TP53 2 Ĩ . B ñ TP53 2 R) 2 2 M 21 R) a a 1 X

Pedic, i e al, e a d e ali, ed, ea, me,

R **TP53** M R) Ň A **TP53** a TM 2 7 A ñ R 1 1 2 2 Ξ. N TP53 M A **TP53** ΞĨ 2 R 2 N E. R) I a a 21 1 N N 21 10.F 1 2 **TP53** R) 1 2 ð, TP53 X 2 R a) M X R R) R) 1 1 .В 2 1 2 Ĩ Ĩ TP53 2 2 Ĩ Ĩ 11 .

C d.i

	a and the second second second	M	TP53	
--	--------------------------------	---	------	--

2 N 2 R X TP53 2 N 21 Ĩ R) N R) 21 . E TP53 2 2 M BA B . A TP53 Ĩ Э R N **TP53** 1 2 2 2 N A A 2 1 R) Ack ledgme .

N ic. fI.ee.

- C ic. fI.ee
- Arora PD, Narani N, McCulloch CA (1999) The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle . Am. J Pathol 154: 871-882.
- 2. Complex

matrix. PLoS One 7: e36173.

- Chrysanthopoulou A, Mitroulis I, Apostolidou E, Arelaki S, Mikroulis D, et al. (2014)
 J Pathol 233: 294-307.
- 4. Coelho NM, McCulloch CA (2016) Contribution of collagen adhesion receptors . Cell Tissue Res 365: 521-538.
- Coelho NM, Arora PD, van Putten S, Boo S, Petrovic P,et al. (2017) Discoidin domain receptor 1 mediates myosin-dependent collagen contraction. Cell Rep 18: 1774-1790.
- 6. Desmoulière A, Rubbia-Brandt L, Grau G, Gabbiani G (1992) Heparin induces

. Lab Invest 67: 716-726.

 Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation . J Cell Biol 122: 103-111.

 Dumin JA, Dickeson SK, Stricker TP, Bhattacharyya-Pakrasi M, Roby JD, et al. (2001) Pro-collagenase-1 (matrix metalloproteinase-1) binds the alpha(2) beta(1) integrin upon release from keratinocytes migrating on type I collagen. J Biol Chem 276: 29368-29374.

 Fournier BP, Ferre FC, Couty L, Lataillade JJ, Gourven M, et al. (2010) Multipotent progenitor cells in gingival connective tissue. Tissue Eng Part A 16: 2891-2899.

10. Gabbiani G, Chaponnier C, Hüttner I (1978)

Biol 76: 561-568.

 Gould TR, Melcher AH, Brunette DM (1980) Migration and division of progenitor cell populations in periodontal ligament after wounding. J Periodontal Res 15: 20-42.

. J Cell