Use of Transcutaneous Application of CO₂ in Diabetic Foot Pathology

Igor Frangez^{1*}, Jure Colnaric¹, Danijela Truden²

¹Department of Traumatology, University Medical Centre Ljubljana, Zaloška Cesta, Ljubljana, Slovenia ²Center for Peripheral Vascular Rehabilitation, Koprska Ulica, Slovenia

*Corresponding Author: Igor Frangez, Department of Traumatology, University Medical Centre Ljubljana, Zaloška Cesta, Ljubljana, Slovenia, Tel: +386 1 522 3255; E-mail: ifrangez@gmail.com

Rec Date: Mar 27, 2017; Acc Date: Apr 12, 2017; Pub Date: April 19, 2017

Copyright: © 2016 Frangez I, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

In neuropathic foot ulcers, the most prominent finding is the loss of peripheral sensation and is typically seen in diabetic patients. In addition, vasculopathy may lead to foot ulcerations in diabetic patients. CO2 therapy was found to improve chronic wound healing in patients with vascular impairment. It refers to the transcutaneous and subcutaneous application of CO₂ as well as CO₂ water baths for therapeutic purpose. In the method used, gaseous CO₂ is applied transcutaneously using the PVR system[®]. CO₂ is applied by means of a single-use, low-density polyethylene bag which is wrapped around the leg being treated and secured with an elastic strap. The advantages of this method, compared to injecting CO2 into subcutaneous tissue, are non-invasiveness, the absence of pain and protection against infection. Compared to CO₂ balneotherapy this approach enables the use of higher CO₂ concentrations, application to chronic wound patients and, with appropriate precautionary measures, prevents the increase of CO₂ in the surrounding air. Finzgar et al. observed that the transcutaneous application of gaseous CO₂ caused a significant increase in the Laser Doppler (LD) flux in cutaneous microcirculation in vivo in humans. The favourable clinical and microcirculatory effects of gaseous CO₂ have further been observed in studies of patients with intermittent claudication as well as patients with primary and secondary Raynaud's phenomenon. The reviewed studies suggest that the increased delivery of CO2 to the ulcerated area will cause vasodilation and an increase in blood flow. The improved angiogenesis and oxygenation will result in healing of the chronic wound. This principle may be applied in the treatment of diabetic foot ulceration. Moreover, the effect on blood flow may also be important in preventive and curative treatment of patients with impaired mobility due to organic or functional causes. Further work is needed for the development of therapeutic strategies to optimize CO₂ use in diabetic foot patients.

Keywords Carbon dioxide therapy; Microcirculation; Contralateral limb; Vasculopathy; Polyneuropathy

Carbon dioxide therapy refers to the transcutaneous and subcutaneous application of CO_2 as well as CO_2 water baths for therapeutic purposes CO_2 rich water bathing has been used since 1930 and was found to improve chronic wound healing in patients with vascular impairment. With neuropathic foot ulcers, the most prominent f nd]n[is the loss of peripheral sensation and is typically seen in diabetic patients. Repeated stress and lack of sensation lead to trauma, breakdown of overlying tissue and eventual ulceration.

One major goal of treatment is to improve microcirculation and thereby oxygen supply and the transport of metabolic pathway endproducts e e ects of CO₂ therapies on skin microcirculation have been studied in animal models. Duling BR [1] observed increased microvascular diameter and increased perivascular pO₂ at sites of exposure to a CO₂ aqueous solution e increased diameter was due to the vasodilatory e ect of topical CO₂ the phenomenon also known as active hyperaemia e increased perivascular pO₂ was due to the e ect of CO₂ on the oxyhemoglobin dissociation curve. Irie et al. [2] demonstrated that CO₂ immersion induced the production of plasma vascular endothelial growth factor (VEGF), resulting in no-dependent angiogenesis associated with the mobilization of endothelial progenitor cells. Hayashi et al. [3] showed that CO₂ immersion increased blood f ow in feet to a much higher extent than plain water and it improved the limb salvage rate in critical limb ischemia patients without the option of revascularization. ese results showed the potential role of topical CO_2 in e ect]ve adjunctive treatment to prevent diabetic ulcer

L H ,•pG I `#0 ð F:cÔ€ Q • V

treated using only standard methods. In the group that underwent subcutaneous treatment with CO_2 a s][n]f tht increase in tissue oxygenation values were observed. ey showed progress in healing and a decrease in size of the injured area.

Finzgar et al. [5] conducted a study of the e ect of the transcutaneous application of gaseous CO_2 on cutaneous blood f owin vivo in humans e Laser Doppler (LD) f ux in cutaneous microcirculation was measured simultaneously in a group of 33 healthy men during rest and a 35-minute CO_2 therapy. One lower limb of each subject was exposed to gaseous CO_2 e contralateral limb was the control, being exposed to air. e CO_2 therapy caused a statistically s][n]f cLht increase in the LD f ux of the studied extremity, whereas in the LD f ux of the control extremity was not statistically s][n]f cLht" Aside from a minor decrease in heart rate, no systemic e ects were found. eLD f ux change is most likely an indirect sign of the successful d] us]on of CO_2 molecules through the skin into microcirculation and a direct indicator of the vasodilatory e ect of

a

2

t