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Introduction 

Heavy metals belong to the most problematic pollutants at various 
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Yeast fermentations

Ethanol fermentation process consists of several unit operations 
to convert carbohydrates into ethanol by S. cerevisiae. �is technology 
is employed worldwide in production of alcoholic beverages and 
bioethanol. A�er brewing the yeast cells are collected from the bottom 
of tank or separated by centrifugation to form slurry of 20-50% solids 
[6]. Loose slurries are further concentrated by �ltration a�er which 
they are thermally disrupted at around 80°C and optionally also with 
organic acids. �e production capacity of major Finnish breweries is 
over 400 million l/a [7] and the respective quantity of formed yeast 
containing residues is approximately 2000 t/a. 

Bioethanol is produced by St1 Biofuels Oy in quantity of 13,000 
t/a in Lahti, Vantaa, Hamina, Jokioinen and Hämeenlinna. Ethanol 
is further concentrated at Hamina. �ese production sites produce 
altogether over 75,000 t/a of residues that contain also yeast cells. 
Hämeenlinna plant directs all organic residues to biogas production 
[8] while the other plants produce also animal feed. �e amount 
of produced feed is over 45,000 t/a [9-12]. �e company has also 
been appointed an environmental permit in 2013 for production of 
lignocellulose ethanol in Kajaani [13]. Yeast residues of the process 
together with other residues would be directed to energy production. 

Enzyme production

�e main steps in enzyme production processes are medium 
preparation, inoculum preparation, inoculation and fermentation, cell 
removal, product puri�cation and concentration, and formulation. 
�e nature of produced enzyme a�ects also properties of microbial 
residues. Extracellular enzymes are recovered from the fermentation 
broth a�er removal of cells which remains the cells intact. Cell removal 
is conducted using �lter press together with �lter aids and �occulants. 
On the contrary, intracellular products are recovered via disruption of 
cells by chemical or mechanical methods, a�er which cell debris are 
included in the residues. 

Currently industrial enzymes are manufactured in Finland by 
two companies, Genencor and Roal Oy. Both companies occupy 
�lamentous fungi and Gram-positive bacteria in their processes [14]. 
Genencor, owned by DuPont, has production sites at Jämsänkoski and 
Hanko. According to operative environmental permission appointed 
by authorities, 90% of the residues from Hanko plant comprise of 
microbial cell side stream which accounted approximately 16,000 t/a 
in 2002 [15]. Jämsä plant residues account to approximately 8,000 t/a 
microbial cell mass. Residues are currently used for biogas production 
and also composting has been considered. 

Roal Oy, owned by Associated British Foods, has a production site 
at Rajamäki. �e production capacity of the plant is 10,000 t/a, from 
which approximately half is in use. Microbial cell residues, among some 

diatomite, account to approximately 2,100 t/a in which solid content is 
some 40%. From this amount 1,500 t/a are directed to combustion in 
order to secure trade secrets related to microbial strain development, 
and the rest 600 t/a to composting [16]. 

Other processes

Suomen Hiiva Oy, owned by Lallemand, produces approximately 
8,000 t/a baker’s yeast in Lahti, the total production capacity being 
12,000 t/a. Yeast is produced in batch processes by sequential scaling 
from 200 g inoculum to 200 t of culture within one week [17]. According 
to the interview and environmental permit, the plant does not produce 
signi�cant amounts of cell waste [17]. 

Finnish based company Neste Oil has been developing microbial 
oil production processes for the manufacturing of biodiesel. �e 
company has operated a pilot plant for producing microbial oil from 
waste and residues at its site in Porvoo, Finland, since 2012 although 
the project is currently on hold. In principle, microbe oil is produced 
via accumulation of lipids to fungal and yeast cells utilizing plant 
biomasses as feedstocks. Also, genetically modi�ed bacteria have been 
developed for the purpose [18]. 

Cursor Oy, the Kotka-Hamina Regional Development Company, 
has developed a process that utilizes forest industry side streams as 
substrates for micro algae in order to produce a variety of products 
[19]. In this process the algal cells would be valorized comprehensively 
and thus their use for biosorption applications would not be possible.

Total biomass potential

�e investigated companies produce altogether over 103,000 t/a of 
microbial side streams. �is value represents all material in the streams 
and thus the actual quantity of cellular biomass is lower. Exact quantities 
of cell material cannot be determined without further characterization 
of each stream. However, some estimation can be made based on the 
environmental permit documentations. �e majority of the side streams 
is formed in brewing and bioethanol production and accordingly, yeast 
Saccharomyces cerevisiae is the predominant organism in the streams. 
�e produced side streams are typically directed to biogas plants and 
to feed production. Minor portion is combusted due to trade secrets. 

Cell wall characteristics of microbes in side streams

�e structure of cell walls is a major factor regarding the biosorption 
capacity of microbial biomass. �e cellular composition tends to be 
rather similar between organisms within the same genus or order 
[20] while di�erences in structure can be found between eukaryotic 
and prokaryotic organisms, and between Gram-positive and Gram-



Citation: Taskila S, Leiviskä T, Haapalainen OP, Tanskanen J (2015) Utilization of Industrial Microbe Side Streams for Biosorption of Heavy Metals 
from Wastewaters. J Bioremed Biodeg 6: 285. doi:10.4172/2155-6199.1000285

Page 3 of 10

diameters above 50 µm have been observed. Regarding the cell wall 
structure most bacteria can be divided into Gram-positive or Gram-
negative cells based on their response to Gram-staining. Cell surface, 
structurally and chemically, is more complex in Gram-negative bacteria 
while the surface in Gram-positive bacteria is composed mostly from 
peptidoglycan (Figure 2) [21]. �e most common representatives of 
Gram-positive bacteria include lactic acid bacteria, the main working 
horses of dairy industry, and Bacillus spp. that belong to the most 
occupied biocatalysts in global scale [22]. 

Fungi and yeasts

�e fungi present in the investigated side streams include yeast 
S. cerevisiae and �lamentous fungi Aspergillus and Trichoderma. 
S. cerevisiae is used in brewing and biofuel production for ethanol 
fermentation. Aspergillus spp. are used e.g. in production of foods, 
citric acid production and enzyme production. Trichoderma reesei is a 
common host for the production of industrial enzymes. 

�e cell wall of fungi determines the morphology and integrity 
of the organism during growth and cell division. �e cell wall is 
formed by three groups of polysaccharides: polymers of mannose 
(mannoproteins), polymers of glucose (�-glucan), and polymers of 
N-acetylglucosamine (chitin), accounting for approximately 40%, 60% 
and 2% of the cell wall dry mass, respectively [23]. �e structures of 
�-glucan and chitin are presented in Figure 3. �e fungal cell wall is a 
dynamic structure that can adapt to physiological and morphological 
changes [24], and respond to environmental stresses by restructuring. 

�e basic structure of fungal cell wall consists of �brillar �-1,3-
glucan and chitin components [25] embedded to an amorphous 
matrix of mannoproteins. Chitin is mostly located near to the plasma 
membrane while the �-glucans are present throughout the cell wall 
[26]. Fungal cell wall contains ca. 10–15% chitin, while yeast cell 
walls contain only 1-2%. �e structure, i.e. crystalline or amorphous 
forms, and deacetylation degree of chitin vary largely between fungal 
species, Ascomycota having the least acetylated chitin due to presence 
of glucans [27].

�e matrix of yeast cell wall is composed most commonly of 
glycosylphosphatidylinositol proteins (GPI-CWP) which are linked 
to �-1,3- and �-1,6-glucans via glycosidic bond [28], or alkali-
sensitive linked cell wall proteins (ASL-CWP). �e cell wall matrix of 
�lamentous fungi composes of galactomannoproteins and �-glucans. 
�e inner layer of the fungal cell wall is electron-transparent and 
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adsorption rates of positively charged ions due to their competition 
of active binding sites with excess H+ ions. Higher pH values lead to 
increase in active sites and negative surface charge. �is promotes 
positively charged ion adsorption due to increased electrostatic 
attraction forces. Besides biomass properties, pH a�ects the metal 
speciation and solubility. 

Temperature of biosorption process does not a�ect the cell 
wall of non-viable micro-organisms, but rather on reaction rate of 
heavy metal adsorption. Since binding of heavy metals can be either 
exothermic or endothermic reaction depending on metal and biomass 
species, optimal temperature is usually determined between 10–50�C. 
Exothermic reaction occurs more favorable at low temperatures and 
endothermic at higher temperatures. �e biosorption of Pb2+, Ni2+, 
Cu2+ and Cr6+ onto S. cerevisiae cell wall was an exothermic reaction 
[48]. Dursun [49] concluded that Pb2+ and Cu2+ biosorption on A. niger 
cell wall was an endothermic reaction. �e biosorption of Pb2+ on B. 
gibsonii S-2 [50], Cr3+ on B. subtilis [51] and As3+ on living cells of B. 
cereus [52] were also endothermic processes. 

Since real e�uents may consist of metals with both exothermic and 
endothermic binding reactions, a decision has to made to separate the 
most harmful contaminant. �is is the case if process is operated in 
single reactor. Operation in multiple reactors allows separation of each7 Tw T*
(ivw1.5(Cr)sis is the cahri0.023 Tw -0.014 Two.elyad
(Tempere ali1)
0.051 Tw n in mcon )]TJ
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galactose. �e water-soluble biosorbent was precipitated by ethanol 
from metal solution a�er reaching the equilibrium, which may not be 
feasible in actual applications [76,77].

In comparative biosorption study for Pb2+ removal by Çolak et al. 
[78] two heavy metal resistant bacteria Bacillus strains, B. pumilus and 
B. cereus
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Source or form, pretreatment 
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research and the weights of their probable impacts on biosorption 
applications are summarized in the Table 6. 

In the present research the majority of the produced side streams 
originated from yeast fermentations. Principally, S. cerevisiae has 
bene�cial properties regarding biosorption applications. It is however 
notable that the availability of the material relays essentially from 
the interests of the side stream producer which should be motivated 
to ensure a steady supply of the side stream throughout the year 
[88]. As the yeast residues are currently sold in open market for feed 
manufacturers, more economically attractive alternative would be 
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