

Surface Design in Additive Manufacturing Medical Implants

Thomas Gerdes*

Department of Cardiology, University of Southern Denmark, Denmark

Abstract

Bone-implant stability can be improved by fabricating porous titanium implant surfaces using additive manufacturing

interfacial bonded, a thorough understanding of the biomechanical properties of porous (lattice) implants is essential.

favorable physiological environment for bone ingrowth and strengthens the bond between the implant and bone.

*Corresponding author: Thomas Gerdes, Department of Cardiology, University of

Received:

Editor assigned: Reviewed:

Published:

Citation: Gerdes T (

Revised:

Citation: Gerdes T (2023) Surface Design in Additive Manufacturing Medical Implants. J Med Imp Surg 8: 161.

Page 2 of 2

Machai e. e e ⊠ die ed Mana⊠FE b- deing aaa i caa be ed ⊠ ia e ⊠gaMe ic echaaica beha i aad Mana⊠i⊠i a eiabe i a⊠ a eMa d f e jag Ma-ca e echaaica i e Mana⊠ caaa Mabe ed b Madi⊠ aa ja i⊠ i a⊠ a e e i ea⊠

In de \boxtimes i ebneing \boxtimes ca abi \boxtimes , \boxtimes i \boxtimes d de e an e a \boxtimes ce \boxtimes e \boxtimes ha \boxtimes a be e \boxtimes hab ef AM b hei an \boxtimes in \boxtimes face a ica \boxtimes h. In de \boxtimes ce a \boxtimes e ab and he e a \boxtimes ce, FE bdeing and i a ed \boxtimes c ehend \boxtimes he echanica beha i f \boxtimes he b hei an \boxtimes i a ed \boxtimes c ehend \boxtimes he echanica beha i f \boxtimes he b hei an \boxtimes face he ic - \boxtimes ain. In de \boxtimes ca \boxtimes \boxtimes he ce f b he ing \boxtimes h, \boxtimes \boxtimes he a i an \boxtimes a de \boxtimes he Dia ad a \boxtimes ce e ein e \boxtimes edin \boxtimes \boxtimes he a \boxtimes a fe fabbi \boxtimes f an eigh \boxtimes ee e i d. T ca \boxtimes he FE b- de ing and i e \boxtimes in \boxtimes facia \boxtimes he ded \boxtimes eng \boxtimes h \boxtimes he \boxtimes een a i ab a ce and b he \boxtimes e e e ca i ed \boxtimes

e fac \mathbb{N} Ma \mathbb{N} a \mathbb{N} ain a ed a \mathbb{N} he b ne e deing inde in \mathbb{N} he FE b- de ana i a \mathbb{N} he \mathbb{N} d' n d a bac. Since \mathbb{N} ain ene g and \mathbb{N} he indica \mathbb{N} e e ecen \mathbb{N} ed, \mathbb{N} he ana ed e \mathbb{N} e e n ed a a efe ence f \mathbb{N} end. In \mathbb{N} he in i ani a e e i en \mathbb{N} , \mathbb{N} he e a n ecia c \mathbb{N} e \mathbb{N} he abbi \mathbb{N} ' ac \mathbb{N} is \mathbb{N} e (e en \mathbb{N} di ec \mathbb{N} n ing \mathbb{N} e) a e ge. e FE bdeingana i a ed adandb nda c ndi \mathbb{N} n, i a \mathbb{N} n and ani a e e i en \mathbb{N} e \mathbb{N} can n \mathbb{N} be di ec \mathbb{N} a ida \mathbb{N} ed. Beca e \mathbb{N} he \mathbb{N} en ie b nded \mathbb{N} eng \mathbb{N} he \mathbb{N} can di ec \mathbb{N} indica \mathbb{N} e \mathbb{N} en a b nded a \mathbb{N} ce \mathbb{N} eng \mathbb{N} and \mathbb{N} he echanica e f ance f \mathbb{N} he a \mathbb{N} ce