Research Article
A New Simple CO2 Minimum Miscibility Pressure Correlation
Khazam M*, Arebi T, Mahmoudi T and Froja MDepartment of Petroleum Engineering, UniveRsity of Tripoli, Tripoli, Libya
- *Corresponding Author:
- Khazam M
Department of Petroleum Engineering
UniveRsity of Tripoli, Tripoli, Libya
Tel.: + 218 21-4627901
E-mail: mohsenkhazam@gmail.com
Received Date: October 12, 2016; Accepted Date: October 18, 2016; Published Date: October 25, 2016
Citation: Khazam M, Arebi T, Mahmoudi T, Froja M (2016) A New Simple CO2 Minimum Miscibility Pressure Correlation. Oil Gas Res 2: 120. doi: 10.4172/2472-0518.1000120
Copyright: © 2016 Khazam M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
The minimum miscibility pressure (MMP) is one of the most important parameter to be determined in miscible gas injection projects to ensure and maximize the displacement sweep efficiency inside the reservoir. Usually the most effective way of determining the MMP is to run slim tube experiments. However, in the early screening stage, we often relay on the published empirical correlations to estimate the MMP and identify the candidate fields for EOR gas injection projects. The main objective of this paper was to examine different published empirical CO2 MMP correlations using measured data mainly obtained from Libya and other published resources, and also to develop a new simple reliable correlation to be applied in the oil industry. The data collected covered a wide range of CO2 MMP (1544-6244 psia) and oil API gravity (28-50ºAPI). Minitab regression tool was extensively used in our study and a wide range of new constructed correlations ranging from simple to complex ones were developed and statistically evaluated. The proposed simple CO2 MMP correlation is mainly function of the measured Pb, API, T and Rsi and has very reliable degree of accuracy (SD=6.7%, ARE=0.44%, AARE=5.74%, R2=95.22%) for the examined data and has shown better performance when compared with the industry popular correlations. The new correlation was validated against 100 measured PVT variables (Pb, Rsi, T and API) obtained from Libya, and the predicted CO2 MMP results have demonstrated very reliable trend (within the measured CO2 MMP trend) with no anomalies.