Research Article
Development and Validation of a Stability-Indicating HPLC Method for the Simultaneous Determination of Salbutamol Sulphate and Theophylline in Pharmaceutical Dosage Forms
Mukesh Maithani* and Ranjit SinghSchool of Pharmaceutical Sciences, Shobhit University, NH-58, Modipuram, Meerut, Uttar Pradesh (250 110), India
- *Corresponding Author:
- Dr. Mukesh Maithani
School of Pharmaceutical Sciences
Shobhit University,NH-58, Modipuram, Meerut
Uttar Pradesh (250 110), India
Tel:+91-9758860810
E-mail: mukeshmaithani@gmail.com
Received date: December 27, 2010; Accepted date: February 09, 2011; Published date: February 17, 2011
Citation: Maithani M, Singh R (2011) Development and Validation of a Stability- Indicating HPLC Method for the Simultaneous Determination of Salbutamol Sulphate and Theophylline in Pharmaceutical Dosage Forms. J Anal Bioanal Tech 1:116. doi: 10.4172/2155-9872.1000116
Copyright: © 2011 Maithani M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
The study describes development and subsequent validation of a stability indicating reverse-phase high- performance liquid chromatography method for the simultaneous estimation of salbutamol sulphate and theophylline in tablet dosage forms. A reversed-phase phenomenax C-18 column (250 mm × 8 mm i.d., particle size 10 μm) column with mobile phase consisting of acetonitrile and phosphate buffer 65:35 (v/v) (pH 4.2 ± 0.02, adjusted with triethylamine) was used. The flow rate was 1.2 mL min -1 and effluents were monitored at 235 nm. The retention times (t R ) of salbutamol sulphate and theophylline were found to be 5.33 min and 13.36 min, respectively. The method was validated in terms of linearity, range, specificity, accuracy, precision, limit of detection (LOD) and limit of quantitation (LOQ). The linearity for both the drugs was found in the range of 2-64 μg mL -1 . The % recoveries of salbutamol sulphate and theophylline were found to be 99.41 and 101.11, respectively. The utility of the procedure is verified by its application to marketed formulations that were subjected to accelerated degradation studies. The method distinctly separated the drug and degradation products even in actual samples. The products formed in marketed tablet dosage forms are similar to those formed during stress studies.