The BP 200-million gallon oil spill at the Gulf of Mexico and many others in the past made headlines because of their magnitude and cost to the environment and brought to limelight why microbes matters in these clean-up efforts. In these man-made disasters, we recognized the role microbes could play in long-term restoration of contaminated sites and
sustainability of the environment. With a focus on Light Non-Aqueous Phase Liquids (LNAPLs), which also include crude oils, this editorial comment highlights these microbial advantages and how best to maximize their benefits.
LNAPL
contamination has historically been perceived as a significant environmental threat by the general public and the regulatory community. New assessments that provide the critical information necessary to evaluate and define clean-up goals for LNAPL are needed. A major obstacle is the recovery of the residual and free phase fractions that are trapped due to capillary and interfacial forces. This implies that conventional pump and treat methods will require excessive energy and costs to for extraction of excessive pore volumes of the groundwater to recover the trapped phases due to mass transfer limitations (ACS symposium series).
Treatment options such as those utilizing natural processes have been found to be efficient and cost-effective. For example, other well-known natural processes such as in: nutrient cycling of nitrogen, phosphorus, sulfur, carbon dioxide, and water; flow of energy through the various trophic levels of the
ecosystems; and natural attenuation of pollutants have served as the underlying template in the sustainability of the ecosystems around the world. By understanding and enhancing these important natural processes, the need for cost efficiency and sustainability has now emerged as the underlying factors for measuring remediation processes and assessment of environmental quality.
The inherent ability of microbes to biodegrade organic contaminants such as LNAPLs can be enhanced through processes that combine the use of surfactants, enhanced mobilization,
biostimulation, mineralization, and bioaugmentation indicating the growing importance for a better understanding and use of these emerging biotechnologies. For example, the combined use of surfactants can significantly enhance the rate of extraction of LNAPLs from groundwater due to increased solubility of the aqueous phase that result from the presence of surfactant micelles.