黑料网

ISSN 2472-0518

Oil & Gas Research
黑料网

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 黑料网 Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

黑料网 Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Case Report   
  • Oil Gas Res,

Concept for A Multi-Feedstock Bio-refinery that uses Engineered Yeast to value winery waste

Luci Domingues*
Centre of Biological Engineering, University of Minho, Braga, Portugal
*Corresponding Author : Luci Domingues, Centre of Biological Engineering, University of Minho, Braga, Portugal, Email: luci@deb.uminho.pt

Received Date: Mar 01, 2023 / Published Date: Mar 31, 2023

Abstract

Without proper management, the wine industry produces a lot of byproducts and residues, which are bad for the environment. Vine shoots, wine lees, and surplus grape must have the potential to be utilized as renewable resources for the production of chemicals and energy. Saccharomyces cerevisiae is now recognized as an effective microbial cell factory for biorefineries thanks to efforts in metabolic engineering. The bioeconomy would clearly benefit if these biorefineries could effectively convert multiple feedstocks, but the current biorefineries designed for producing multiple products frequently rely on just one feedstock. Additionally, a biorefinery ought to be able to supplement the production of biofuel with the production of high-value products in order to maximize production economics and minimize the impact on the environment of fossil fuel consumption [1]. Through the biosynthesis of xylitol and ethanol, this study proposes an integrated strategy for the valorization of various wastes from winemaking processes. The xylose-rich hemicellulosic fraction of hydrothermally pretreated vine shoots was turned into xylitol with genetically modified S.cerevisiae strains, and the cellulosic fraction was used to make bioethanol. Additionally, sugar-rich grape must was
successfully utilized as a low-cost source for yeast propagation. In a Simultaneous Saccharification and Fermentation process configuration, the inoculum size and enzyme loading were adjusted to optimize xylitol production. Bioethanol was also produced from the glucan-rich cellulosic using a yeast strain with cellulases on the cell surface. High ethanol concentrations were achieved with the addition of wine lees or grape must, which are essential for the economic viability of distillation [2]. A synergistic alternative for reducing the amount of waste released into the environment while simultaneously converting a variety of winery wastes and by-products into biofuel and an added-value chemical is this integrated multi-feedstock valorization.

Citation: Domingues L (2023) Concept for A Multi-Feedstock Bio-refinery thatuses Engineered Yeast to value winery waste. Oil Gas Res 9: 292.

Copyright: © 2023 Domingues L. This is an open-access article distributed underthe terms of the Creative Commons Attribution License, which permits unrestricteduse, distribution, and reproduction in any medium, provided the original author andsource are credited.

International Conferences 2024-25
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top