黑料网

ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
黑料网

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 黑料网 Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

黑料网 Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Co-Substrating of Peanut Shells with Cornstalks Enhances Biodegradationby Pleurotus ostreatus

Anike FN, Yusuf M and Isikhuemhen OS*
Department of Natural Resources and Environmental Design, SAES, North Carolina A&T State University, Greensboro, North Carolina, USA
Corresponding Author : Isikhuemhen OS
Department of Natural Resources and
Environmental Design, SAES, North Carolina
A&T State University, Greensboro, North
Carolina, USA
Tel: 336-558-8085
Fax: 336-334-7844
E-mail: omon@ncat.edu
Received November 01, 2015; Accepted January 22, 2016; Published January 26, 2016
Citation:Anike FN, Yusuf M, Isikhuemhen OS (2016) Co-Substrating of Peanut Shells with Cornstalks Enhances Biodegradation by Pleurotus ostreatus. J Bioremed Biodeg 7:327. doi: 10.4172/2155-6199.1000327
Copyright: © 2016 Anike FN, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

World consumption of peanuts has increased tremendously, resulting in abundance of peanut shell waste. The high lignin content of peanut shells limits their bioconversion to useful products or recycling. Therefore, the synergy in co-substrating peanut shells (PS) and cornstalks (CS) to enhance biodegradation was evaluated. Various compositions of peanut shells and cornstalks (% dry weight) herein called co-substrate - 90PS:10CS, 75PS:25CS, 50PS:50CS, 25PS:75CS, 10PS:90CS, and two controls Cont1-100PS and Cont2-100CS were studied under solid state fermentation (SSF) with a white rot fungus, Pleurotus ostreatus for 120 days. A two-factorial experiment in a completely randomized design (CRD) was used. Results showed that substrate composition and fermentation time were important variables in substrate degradation. Lignin degradation, losses in organic matter, cellulose and hemicellulose increased with time. Increasing the composition of CS in co-substrates resulted in higher lignin loss. The most lignin (40.6%) was lost in co-substrates with 75-90% CS whereas more organic matter was lost in co-substrate containing 50% CS and above. Highest losses in organic matter (24.09%), cellulose (17.41%), and hemicellulose (52.07%) occurred in co-substrate with 50% CS, which is where the greatest reduction in C:N ratio (33%) also occurred. The macro- and micro-element content of co-substrates and the controls varied and increased significantly after fermentation. Co-substrating PS and CS appears to be a promising, environmentally-friendly approach for bioconversion of both agricultural wastes into bio-products with potential application in animal feed, biofuel, or for cultivation of mushrooms.

Keywords

Citations : 7718

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top