Research Article
Effect of Xylitol and Fluoride Dentifrices on Human Enamel Surfaces Following Acid-Etching: Scanning Electron Microscopic Study
John Hicks1*, Jun Wu2and Catherine M Flaitz31Departments of Pathology and Immunology, and Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, and Department of Pediatric Dentistry, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
2 Pediatric Dentistry Private Practice, Bellaire Kids Dental, Houston, TX, USA
3Division of Pediatric Dentistry, College of Dentistry, The Ohio State University, Chief of Division of Dentistry, Nationwide Children’s Hospital, Columbus, OH, USA
- *Corresponding Author:
- Hicks J
Department of Pathology AB1195
Texas Children’s Hospital
6621 Fannin Street AB1195
Houston TX-77030, USA
Tel; 832-824-1869/832-824-2250
Fax: 832-825-1032
E-mail: hicks@bcm.edu
Received Date: November 20, 2016 Accepted Date: December 22, 2016 Published Date: December 30, 2016
Citation: Hicks J, Wu J, Flaitz CM (2016) Effect of Xylitol and Fluoride Dentifrices on Human Enamel Surfaces Following Acid-Etching: Scanning Electron Microscopic Study. Pediatr Dent Care 1: 127.
Copyright: © 2016 Hicks J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Purpose: The purpose of this in vitro pilot study was to evaluate the effects of xylitol and sodium fluoride containing dentifrices on the surface topography of sound human enamel following acid-etching, using scanning electron microscopic (SEM) techniques. Methods: Enamel surfaces from caries-free human molar teeth (n=10) underwent debridement, and dental prophylaxis. Each tooth was sectioned into 5 portions, with each tooth portion assigned to a specific treatment group: 1) acid-etching (35% phosphoric acid gel, 60 seconds); 2) acid-etching followed by synthetic saliva rinsing; 3) acid-etching followed by treatment with Fluoride Free Xylitol Toothpaste (25% xylitol) and synthetic saliva rinsing; 4) acid-etching followed by treatment with Fluoride and Xylitol Toothpaste (31% xylitol, 0.243% sodium fluoride) and synthetic saliva rinsing; and 5) acid-etching followed by treatment with Sodium Fluoride Toothpaste with No Xylitol (0.243% sodium fluoride) and synthetic saliva rinsing. Enamel surfaces from an additional 10 caries-free human teeth served as untreated control teeth that only underwent soft tissue debridement and prophylaxis. Dentifrice treatment was performed for 120 seconds twice daily with synthetic saliva rinsing between dentifrice applications followed by synthetic saliva rinsing at 37°C for 7 days with fresh synthetic saliva replenished on a daily basis. Following the experimental period, the tooth portions were prepared for scanning electron microscopy using standardized techniques. Results: Acid-etching alone created type 1 etching patterns with a finely porous enamel surface. With acidetching followed by synthetic saliva rinsing, the effects of acid-etching were obscured by a finely granular surface coating with fine porosities. With acid-etching followed by xylitol only dentifrice treatment and synthetic saliva rinsing, enamel surfaces showed fine granular coatings with no obvious porosities. Enamel surfaces that were acid-etched then treated with the xylitol with fluoride dentifrice and rinsed with synthetic saliva possessed homogenous surface coatings with areas with finely granular to globular deposits. Acid-etched enamel surfaces that were treated with the fluoride dentifrice without xylitol and rinsed with synthetic saliva had surface coatings with numerous relatively large globoid deposits, morphologically resembling calcium fluoride deposits. Clinical significance: The clinical application of the results from the current in vitro pilot study relate to the procedure of acid-etching teeth for adhesive dental materials. With acid-etching, there is a residual exposed etched enamel surface following sealant, restoration or orthodontic bracket placement. Application of xylitol containing fluoridated dentifrice may facilitate fluoride uptake from the dentifrice and calcium and phosphate uptake from saliva, aid in the elimination of the surface effects of acid-etching, and allow for remineralization of the acid-damaged enamel surface that was not protected by adhesive resin placement.