黑料网

ISSN: 2155-952X

Journal of Biotechnology & Biomaterials
黑料网

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 黑料网 Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

黑料网 Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Efficacy of laser shock processing of biodegradable Mg and Mg-1Zn alloy on their in vitro bacterial response

*Corresponding Author:

Copyright: © 2020  . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 
To read the full article Peer-reviewed Article PDF image

Abstract

The development of biomaterials for biodegradable and bioabsorbable implants in bone repair continues to gain popularity. Magnesium and its alloys have emerged as firm candidates because they combine a suitable Young's modulus, close to that of the bone, low density, good biocompatibility andbioactivity. Despite these interesting properties, magnesium alloys also have some draw backs. For example, their relatively fast degradation rates which, depending on the nature and amount of alloying elements, can induce some toxicity. An important factor in the use for these applications is that degradation products could be at bacterial adhesion, and so contribute avoiding infection and the consequent implant failure. The antibacterial capacity of Mg–base alloys has been evaluated in previous studies but there is still a lack of consensus.

Different approaches have been implemented to partly overcome disadvantages associated with the fast corrosion rate. In this work, the application of laser shock processing (LSP) technology to bioabsorbable magnesium is presented for the specificcase of a commercially pure Mg and a Mg-1Zn alloy. Zinc as an alloying element has the capability of enhancing the corrosion resistance and the mechanical properties of magnesium. Our aim is to relate the possible generated subsurface residual stresses, together with the modification of the surface microstructure, the modification of corrosion behaviour, the adhesion and viability of a strain of Staphylococcus epidermidis, which is one of the main bacteria present in nosocomial implant related infections and the specific effects of the inclusion of 1 wt% Zn in solid solution on LSP Mg.

Keywords

Citations : 3330

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Recommended Journals
Share This Page
International Conferences 2024-25
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top