黑料网

ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
黑料网

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 黑料网 Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

黑料网 Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Bacillus cereus Mediated ε-Caprolactam Degradation: An Initiative for Waste Water Treatment of Nylon-6 Production Plant.

Mehta SK, Panchal PA, Butala BN and Sane SA*
Department of Biotechnology, Research and Development Centre, Gujarat State Fertilizers and Chemicals Limited, Vadodara-391750, India
Corresponding Author : Sane SA
Department of Biotechnology
Research and Development centre
GSFC Ltd., Vadodara 391750, India
Tel: +91 9712986358
Fax: +91 0265 2240966
E-mail: sasane@gsfcltd.com
Received May 14, 2014; Accepted June 05, 2014; Published June 09, 2014
Citation: Mehta SK, Panchal PA, Butala BN, Sane SA (2014) Bacillus cereus Mediated ε-Caprolactam Degradation: An Initiative for Waste Water Treatment of Nylon-6 Production Plant. J Bioremed Biodeg 5:230. doi:10.4172/2155-6199.1000230
Copyright: © 2014 Mehta SK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadDownload

Abstract

Present study focuses on isolation, characterization and application of a novel bacterial strain for biological treatment of waste water from Nylon 6 production plant of Gujarat State Fertilizers and Chemicals (GSFC), Vadodara. This microbe was isolated by applying basal synthetic medium containing ε-caprolactam (precursor of Nylon-6 polymer) as a sole source of carbon and nitrogen. It was identified as Bacillus cereus strain YH-10 on the basis of primary characterization followed by 16s ribosomal RNA gene analysis. This strain has very high tolerance for ε-caprolactam (3.5%) compared to other reported ε-caprolactam -degrading microbes. It degrades 91% and 83.3% ε-caprolactam of synthetic media and Nylon-6 Waste water, respectively in 96 hrs. ε-caprolactam degradation was calculated by analyzing unutilized ε-caprolactam concentration in the samples using liquid chromatography-mass spectroscopy (LC-MS/MS) and chemical oxygen demand (COD) analysis. Based on these observations, biological treatment of waste water from Nylon-6 plant is envisaged utilizing minimum resources.

Keywords

Citations : 7718

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top