黑料网

ISSN: 2168-9652

Biochemistry & Physiology: 黑料网
黑料网

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 黑料网 Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

黑料网 Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • Biochem Physiol 2018, Vol 7(1): 228
  • DOI: 10.4172/2168-9652.1000228

Fast Twitch Skeletal Muscle Remodeling by Prolonged Endurance Exercise is Associated with Crosstalk between Anabolic and Catabolic Signaling Pathways in Mice

Kwon I1, Jang Y1, Song W1, M Cosio-Lima L2 and Lee Y1*
1Molecular and Cellular Exercise Physiology Laboratory, Department of Exercise Science and Community Health, Pensacola, Florida, University of West Florida, USA
2Clinical Exercise Physiology Laboratory, Department of Exercise Science and Community Health, University of West Florida, Pensacola, Florida, USA
*Corresponding Author : Lee Y, Department of Exercise Science and Community Health, College of Health, University of West Florida, USA, Tel: +1 850-474-2596, Email: ylee1@uwf.edu

Received Date: Jan 22, 2018 / Accepted Date: Mar 07, 2018 / Published Date: Mar 15, 2018

Abstract

Endurance exercise (EXE) is a potent inducer of both muscle fiber transformation as well as autophagy in skeletal muscles. However, it has remained unknown whether autophagy is associated with EXE-induced muscle fiber transformation. Thus, we examined autophagy responses in in fast muscle (tibialis anterior; TA) tissues after sixweek long term treadmill EXE by assessing a series of autophagy signaling pathways and muscle fiber transformation through Western blot analysis and fluorescence microscopy. First, we confirmed that EXE caused slow muscle phenotypes in TA muscle, evidenced by reduction in cross-sectional areas of muscle fibers, increases in type I and II fibers, and upregulation of mitochondrial proteins. Subsequently, our results showed that transformation of muscle fiber types concurred with autophagy upregulation (e.g., an increase in LC3-II, LC3-II/I ratio, and BNIP3); however, intriguingly, inductive signaling of autophagy (e.g., phosphorylation of AMPK and BCL2) were suppressed. Moreover, anabolic signaling (e.g., an increase in phosphorylation levels of AKT, mTOR, p70S6K, and FOXO3), which typically serves as anti-autophagy factor were significantly elevated. Our findings suggest that although autophagy levels were sustained higher in TA of EXE-trained mice compared to sedentary mice, concomitant potentiation of anabolic signaling by EXE may serve as a negative feedback to prevent excessive catabolism induced by autophagy. We also suggest that this anabolic response may be necessary for remodeling of anaerobic fast muscle fibers into aerobic muscle fibers and mitochondrial biogenesis.

Keywords: Endurance exercise; Autophagy; Mitochondria; Skeletal muscle; Anabolic signalling; Muscle fiber type

Citation: Kwon I, Jang Y, Song W, M Cosio-Lima L, Lee Y (2018) Fast Twitch Skeletal Muscle Remodeling by Prolonged Endurance Exercise is Associated with Crosstalk between Anabolic and Catabolic Signaling Pathways in Mice . Biochem Physiol 7:228. Doi: 10.4172/2168-9652.1000228

Copyright: © 2018 Kwon I, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

International Conferences 2024-25
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top