Melatonin's Potential and Strategies for Reducing Abiotic Stress in Horticultural Plants
Received Date: Mar 02, 2023 / Published Date: Mar 30, 2023
Abstract
Melatonin is a moderated pleiotropic particle in creatures and plants. Numerous developmental processes and stress responses are influenced by melatonin; As a result, the study of its function in plants, particularly horticultural plants, is rapidly expanding. Numerous studies have shown that phytomelatonin is a plant biostimulant that makes the plant more resistant to a variety of abiotic stressors, such as high temperatures, drought, osmotic disturbance,heavy metals, and ultraviolet light (UV). Melatonin appears to play a role in the scavenging of reactive oxygen species (ROS) and other free radicals, influencing the primary and secondary metabolism of plants, regulating the transcripts of stress-related enzymes and transcription factors, and interfering with other hormones in different environments.This pleiotropy makes phytomelatonin an alluring controller to further develop protection from abiotic stress in plants. The new revelation of the potential phytomelatonin receptor CAND2/PMTR1 and the recommendation of putative models connected with the phytomelatonin flagging pathways makes phytomelatonin another plant chemical. This review provides a summary of the biosynthetic and metabolic pathways for phytomelatonin in plants, as well as the most recent advancements in research on phytomelatonin and abiotic stress in horticultural plants, based on relevant studies from our lab. This study will give a reference to clarifying the administrative system of phytomelatonin influencing the protection from abiotic stress in plants.
Citation: Li ZG (2023) Melatonin's Potential and Strategies for Reducing AbioticStress in Horticultural Plants. J Plant Genet Breed 7: 144. Doi: 10.4172/jpgb.1000144
Copyright: © 2023 Li ZG. This is an open-access article distributed under theterms of the Creative Commons Attribution License, which permits unrestricteduse, distribution, and reproduction in any medium, provided the original author andsource are credited.
Share This Article
黑料网 Journals
Article Tools
Article Usage
- Total views: 1874
- [From(publication date): 0-2023 - Nov 22, 2024]
- Breakdown by view type
- HTML page views: 1764
- PDF downloads: 110