黑料网

ISSN: 2157-7617

Journal of Earth Science & Climatic Change
黑料网

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 黑料网 Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

黑料网 Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Mini Review   
  • J Earth Sci Clim Change, Vol 13(8): 637
  • DOI: 10.4172/2157-7617.1000637

Mini Review on Global Solar Radiation and the Ratio In between Crop Models

Rahul Mehtha*
Department of Agricultural and Environmental Science, Maharshi University, Tripura, India
*Corresponding Author : Rahul Mehtha, Department of Agricultural and Environmental Science, Maharshi University, Tripura, India, Email: rahul.mehtha.11@yahoo.co.in

Received Date: Jul 27, 2022 / Accepted Date: Aug 16, 2022 / Published Date: Aug 23, 2022

Abstract

The review was conducted at the eight individual sites in Austria and the Czech Republic where measured daily RG values were available as a reference, with seven methods for RG estimation being tested, and ii) for the agricultural areas using daily data from 52 weather stations, with five RG estimation methods. In the latter case the RG values estimated from the hours of sunshine using the angstrom - Prescott formula were used as the standard method because of the lack of measured RG data. At the site level we found that even the use of methods based on hours of sunshine, which showed the lowest bias in RG estimates, led to a significant distortion of the key crop model outputs. When the angstrom-Prescott method was used to estimate RG, for example, deviations greater than 10 per cent in winter wheat and spring barley yields were noted in 5 to 6 per cent of cases. The precision of the yield estimates and other crop model outputs was lower when RG estimates based on the diurnal temperature range and cloud cover were used. The methods for estimating RG from the diurnal temperature range produced a wheat yield bias of more than 25 per cent in 12 to 16 per cent of the seasons. Such uncertainty in the crop model outputs makes the reliability of any seasonal yield forecasts or climate change impact assessments questionable if they are based on this type of data. The spatial assessment of the RG data uncertainty propagation over the winter wheat yields also revealed significant differences within the study area. We found that RG estimates based on diurnal temperature range or its combination with daily total precipitation produced a bias of to 30 per cent in the mean winter wheat grain yields in some regions compared with simulations in which RG values had been estimated using the angstrom -Prescott formula

Citation: Mehtha R (2022) Mini Review on Global Solar Radiation and the Ratio In between Crop Models. J Earth Sci Clim Change, 13: 637. Doi: 10.4172/2157-7617.1000637

Copyright: © 2022 Mehtha R. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top