黑料网

ISSN: 2329-8863

Advances in Crop Science and Technology
黑料网

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 黑料网 Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

黑料网 Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • Adv Crop Sci Tech 2016, Vol 4(1): 208
  • DOI: 10.4172/2329-8863.1000208

Molecular Analysis of Biofield Treated Eggplant and Watermelon Crops

Mahendra Kumar Trivedi1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Mayank Gangwar2 and Snehasis Jana2*
1Trivedi Global Inc., Henderson, USA
2Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, Madhya Pradesh, India
*Corresponding Author : Snehasis Jana, Trivedi Science Research Laboratory Pvt. Ltd., Hall-A, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Rd, Bhopal- 462026, Madhya Pradesh, India, Tel: +91-755-6660006, Email: publication@trivedisrl.com

Received Date: Dec 30, 2015 / Accepted Date: Jan 25, 2016 / Published Date: Jan 31, 2016

Abstract

Eggplant and watermelon, as one of the important vegetative crops have grown worldwide. The aim of the present study was to analyze the overall growth of the two inbreed crops varieties after the biofield energy treatment. The plots were selected for the study, and divided into two parts, control and treated. The control plots were left as untreated, while the treated plots were exposed with Mr. Trivedi’s biofield energy treatment. Both the crops were cultivated in different fields and were analyzed for the growth contributing parameters as compared with their respective control. To study the genetic variability in both plants after biofield energy treatment, DNA fingerprinting was performed using RAPD method. The eggplants were reported to have uniform colored, glossy, and greener leaves, which are bigger in size. The canopy of the eggplant was larger with early fruiting, while the fruits have uniform shape and the texture as compared with the control. However, the watermelon plants after the biofield treatment showed higher survival rate, with larger canopy, bright and dark green leaves compared with the untreated plants. The percentage of true polymorphism observed between control and treated samples of eggplant and watermelon seed samples were an average value of 18% and 17%, respectively. Overall, the data suggest that Mr. Trivedi’s biofield energy treatment has the ability to alter the plant growth rate, and can be utilized in better way as compared with the existing agricultural crop improvement techniques to improve the overall crop yield.

Keywords: Solanum melongena; Citrullus lanatus; Biofield energy; Plant growth attributes; DNA Fingerprinting; Polymorphism

Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, et al. (2016) Molecular Analysis of Biofield Treated Eggplant and Watermelon Crops. Adv Crop Sci Tech 4:208. Doi: 10.4172/2329-8863.1000208

Copyright: © 2016 Trivedi MK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

International Conferences 2024-25
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top