Research Article
Molecular Cloning, Characterization, and Expression Analysis of Flavanone 3-Hydroxylase (F3H) Gene during Muscadine Grape Berry Development
Jasmine Hall1, Anthony Ananga1*, Vasil Georgiev1, Joel Ochieng2, Ernst Cebert3 and Violetka Tsolova11Center for Viticulture and Small Fruit Research, College of Agriculture and Food Science, Florida A&M University, 6505 Mahan Drive, Tallahassee FL 32317, USA
2Faculties of Agriculture and Veterinary Medicine, University of Nairobi, P. O. Box 29053 Nairobi, 00625 Kenya
3Department of Biological and Environmental Sciences, Alabama A&M University, 4900 Meridian Street, Normal AL 35762, USA
- Corresponding Author:
- Anthony Ananga
Center for Viticulture and Small Fruit Research
College of Agriculture and Food Science, Florida A&M University
6505 Mahan Drive, Tallahassee FL 32317, USA
Tel: +1-850-412-7393
Fax: +1-850-561-2617
E-mail: anthony.ananga@gmail.com, Anthony.ananga@famu.edu
Received date:: April 25, 2015; Accepted date:: May 18, 2015; Published date:: May 25, 2015
Citation: Hall J, Ananga A, Georgiev V, Ochieng J, Cebert E, et al. (2015) Molecular Cloning, Characterization, and Expression Analysis of Flavanone 3-Hydroxylase (F3H) Gene during Muscadine Grape Berry Development. J Biotechnol Biomater 5:180. doi:10.4172/2155-952X.1000180
Copyright: © 2015 Hall J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Flavonoids are natural antioxidants that include the groups of notable pigments such as anthocyanins and proanthocyanidins. Flavanone 3-Hydroxylase (F3H) is a key enzyme needed for the biosynthesis of flavonoids, the main ingredients of muscadine grape extracts. This study reports the first successful isolation, cloning and characterization of F3H gene from Vitis rotundifolia Michx. The full length cDNA of V. rotundifolia F3H gene (designated as VrF3H) had an open reading frame (ORF) of 1081 bp encoding 364 amino acids with a calculated molecular mass of 40.8kDa as well as an isoelectric point of 5.60. Comparative and in silico analyses revealed that the cloned VrF3H from muscadine grapes has high identity with F3H from other plant species. The deduced VrF3H protein showed similarities with other available plant F3H proteins, and the conserved amino acids ligating ferrous iron and residues participating in 2-oxo-glutarate binding were found in similar positions comparable to other F3Hs. Furthermore, three-dimensional structure modeling showed that F3H protein had the enzyme core consisting of β-sheet, a typical structure shared by all 2-oxoglutarate-dependent dioxygenases including F3Hs. Phylogenetic tree analysis indicated that VrF3H belongs to the Vitis F3H cluster. VrF3H transcripts were found to be abundantly expressed in the in-vitro red cells, véraison and physiologically mature red berries, but not expressed in the skins of the green berries. The isolation and characterization of VrF3H gene will enable further study in the role of VrF3H gene in the biosynthesis of flavonoids in V. rotundifolia.