ºÚÁÏÍø

ISSN: 2329-8863

Advances in Crop Science and Technology
ºÚÁÏÍø

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ ºÚÁÏÍø Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

ºÚÁÏÍø Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Novel polysaccharide – phenolic derivative of poly (glyceric acid ether) from different species of Boraginaceae family and its anticancer efficacy

*Corresponding Author:

Copyright: © 2020  . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 
To read the full article Peer-reviewed Article PDF image

Abstract

The Boraginaceae family comprises a group of plants that are important for medicine and pharmaceutics. The therapeutic effect of these plants is related to the content of many biologically active compounds. However, these plants are also rich in hepatotoxic pyrrolizidine alkaloids. The high molecular (>1000 kDa) water-soluble preparations from medicinal plants of Symphytum asperum, S.caucasicum, S.officinale, S.grandiflorum,  Anchusa italica, Cynoglossum officinale and Borago officinalis (Boraginaceae) were investigated. The fractionation of aforenamed preparations by means of ultrafiltration on membrane filter with cut off value of 1000 kDa permitted completely remove toxic pyrrolizidine alkaloids. Consequently the use of above mentioned plants does not rise any objection. The main chemical constit¬uent of high molecular preparations was found  to be poly[oxy-1-carboxy-2-(3,4-dihydroxyphenyl)ethylene] or poly[3-(3,4-dihydroxyphenyl)glyceric acid] (PDPGA)(1) (Fig. 1) according to data of liquid-state 1H, 13C NMR, 2D 1H/13C  HSQC, 2D DOSY and solid-state 13C NMR spectra. The polyoxyethylene chain is the backbone of this polymer molecule with a residue of 3-(3,4-dihydroxyphenyl)glyceric acid (2) (Fig. 2.) as the repeating unit. PDPGA as a phenolic derivative of poly(glyceric acid ether) belongs to a class of an acidic polysaccharides [poly(sugar acids)]. PDPGA exhibited anticomplementary, antioxidant, antiinflammatory, burn and wound healing and anticancer activities (Fig. 3). Human Hyaluronidase (Hyal-1) degrades high molecular Hyaluronic acid into smaller fragments which have pro-inflammatory effects. PDPGA possessed the ability to inhibit the enzymatic activity of Hyal-1 completely. Consequently PDPGA exhibited anti-inflammatory efficacy. Besides, PDPGA exerted anticancer activity in vitro and in vivo against androgen-dependent (LNCaP)  and –independent (22Rv1)   human prostate cancer (PCA) cells with comparatively lesser cytotoxicity towards non-neoplastic human prostate epithelial cells PWR-1E. PDPGA induced apoptotic death by activating caspases, and also strongly decreased androgen receptor and prostate specific antigen expression by 87%. Overall, this study identifies PDPGA as a potent agent against PCA without any toxicity, and supports its clinical application.

Keywords

Citations : 5759

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online Access to Research in the Environment (OARE)
  • Open J Gate
  • Academic Keys
  • JournalTOCs
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Scholarsteer
  • SWB online catalog
  • Publons
  • Euro Pub
Share This Page
International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top