Recent Trends in Temperature and Precipitation in Al Jabal Al Akhdar, Sultanate of Oman, and the Implications for Future Climate Change
Received Date: Jul 21, 2015 / Accepted Date: Aug 25, 2015 / Published Date: Sep 05, 2015
Abstract
This article presents an analysis of recent trends and changes in temperature and precipitation for Al Jabal Al Akhdar, Sultanate of Oman; the first such analysis in this region. The objective is to assess the extent of observed climate change in this mountainous region over the last three decades using statistical tools, as well as providing a synthesis of future regional projections of climate change from global climate models (GCMs). A clear picture of climate change in the observed record is presented, with statistically significant increases in mean (+0.27°C/decade) and minimum (+0.79°C/decade) temperature coincident with a general decrease in precipitation (-9.42 mm/decade) from the 1979-2012 record. Climate change projections from various Intergovernmental Panel on Climate Change (IPCC) scenario families across a range of different models and time slices indicate a general increase in temperature and a decrease in precipitation over the present century. More climate change impact assessments are required to further assess the implications for environment and natural resources, especially water systems. This will better support policy- and decision-makers in evaluating and modifying existing policies in order to develop long-term strategic plans for climate change mitigation and adaptation.
Keywords: Al Jabal Al Akhdar; Climate change; Extremes; Mountains; Oman; Trends
Citation: Al-Kalbani MS, John C, Martin FP (2015) Recent Trends in Temperature and Precipitation in Al Jabal Al Akhdar, Sultanate of Oman, and the Implications for Future Climate Change. J Earth Sci Clim Change. 6: 295. Doi: 10.4172/2157-7617.1000295
Copyright: © 2015 Al-Kalbani MS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
黑料网 Journals
Article Tools
Article Usage
- Total views: 16881
- [From(publication date): 10-2015 - Jan 27, 2025]
- Breakdown by view type
- HTML page views: 12347
- PDF downloads: 4534