黑料网

ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
黑料网

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 黑料网 Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

黑料网 Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Removal of Dimethyl Sulphide in a Biotrickling Filter under ThermophilicConditions

Wei ZS*, Ye QH, Li BR, Chen ZY and Huang QR
School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
Corresponding Author : Wei ZS
School of Environmental Science and Engineering
Sun Yat-sen University
Guangdong Provincial Key Laboratory of Environmental Pollution Control
and Remediation Technology (Sun Yat-sen University)
Guangzhou 510275, China
Tel: +8620 84037096
Fax: +8620 39332690
E-mail: weizaishan98@163.com
Received: October 08, 2015; Accepted: October 31, 2015; Published: November 02, 2015
Citation: Wei ZS, Ye QH, Li BR, Chen ZY, Huang QR (2015) Removal of Dimethyl Sulphide in a Biotrickling Filter under Thermophilic Conditions. J Bioremed Biodeg 6:320. doi:10.4172/2155-6199.1000320
Copyright: © 2015 Wei ZS, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at ,

Abstract

Biotrickling filter (BTF) of odorous containing dimethyl sulfide (DMS) emitted from the sewage sludge drying under thermophilic conditions was investigated. DMS removal efficiencies in the BTF achieved 50%, 65%, 75% at 40, 50, 60°C , respectively. The elimination capacities at 60°C was higher than that of biotrickling filter at 50°C or 40°C. At a bed contact time of 34.4 s, the elimination capacities at 60°C in the BTF was 14 g-DMS.m-3.h-1, which was higher than that of mesophilic biofilter. Sulfur dioxide (SO2) has inhibitory effect to the microbial activity for dimethyl sulfide degradation. Bacterial communities in the BTF, which were assessed by PCR-DGGE, play the dominant role in the biological processes of metabolism, sulfur oxidation, sulfate-reducing and carbon oxidation under thermophilic conditions. These results show that thermophilic biotrickling filter is achievable and open new possibilities for applying BTF to hot odour gas streams from sewage sludge drying.

Keywords

Citations : 7718

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top