黑料网

ISSN: 2161-0460

Journal of Alzheimers Disease & Parkinsonism
黑料网

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 黑料网 Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

黑料网 Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Role of GPR40 for Fish Oil PUFA-mediated BDNF Synthesis in the Monkey Hippocampus

Arumugam Mathivanan1,2, Yoshio Minabe2, Tsuguhito Ota3, Naoto Nagata3, Kosuke R. Shima3 and Tetsumori Yamashima*

1Departments of Restorative Neurosurgery, Brain/Liver Interface Medicine Research Center, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan

2Departments of Restorative Neurosurgery and Psychiatry and Neurobiology, Brain/Liver Interface Medicine Research Center, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan

3Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan

Corresponding Author:
Tetsumori Yamashima
Department of Restorative Neurosurgery
and Psychiatry, Kanazawa University Graduate
School of Medical Science, Kanazawa, Japan
Tel: +81(90)2129-1429
E-mail: yamashima215@gmail.com

Received date: January 25, 2016; Accepted date: February 29, 2016; Published date: March 07, 2016

Citation: Mathivanan A, Minabe Y, Ota T, Nagata N, Shima KR, et al. (2016) Role of GPR40 for Fish Oil PUFA-mediated BDNF Synthesis in the Monkey Hippocampus. J Alzheimers Dis Parkinsonism 6:213. doi:10.4172/2161-0460.1000213

Copyright: © 2016 Mathivanan A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Polyunsaturated fatty acids (PUFA) are known to be crucial for learning and memory. However, the detailed mechanism of PUFA effects upon neuronal functions remains almost unknown except for the possible facilitation of membrane fluidity. G-protein coupled receptor 40 (GPR40) was found to induce Ca2+ mobilization in response to diverse PUFA. Thereafter, the authors found GPR40 expression in the newborn neurons of the monkey hippocampus after ischemia. This suggested implications of PUFA-mediated GPR40 signaling for adult neurogenesis underlying learning and memory.

Objective: This study aims at evaluating whether PUFA-mediated GPR40 activation can affect synthesis of brain-derived neurotrophic factor (BDNF) with the aid of its proteolytic enzyme furin.

Methods: Monkeys underwent 20 min transient whole brain ischemia by clamping both the innominate and left subclavian arteries. On days 7 and 15 after ischemia/reperfusion, when adult neurogenesis was shown to be maximal previously by the authors, the brain samples were resected. By the Western blotting analysis of mature-BDNF (m-BDNF), pro-BDNF and furin, syntheses of BDNF in response to two GPR40 agonists as well as selective GPR40 antagonist GW1100, were studied using normal and post-ischemic monkey dentate gyrus (DG) tissue extracts.

Results: Both up-regulation of m-BDNF synthesis in response to two GPR40 agonists; fish oil PUFA and docosahexaenoic acid (DHA) and its down-regulation in response to GW1100, were observed. GPR40 antagonist inhibited m-BDNF synthesis, whereas two GPR40 agonists stimulated m-BDNF synthesis conceivably via furin activation. Cleavage of p-BDNF to m-BDNF by furin as well as syntheses of m-BDNF and furin in the DG tissues, occurred immediately after incubation with fish oil PUFA or DHA. Dynamic changes of GPR40, m-BDNF synthesis, and furin occurred simultaneously.

Conclusions: These data, although correlative, suggested that m-BDNF may be synthesized by the cleavage of pre-stocked pro-BDNF and/or released from the cell store in response to PUFA. By activating GPR40 and furin, PUFA may be related to adult neurogenesis and the concomitant synaptic plasticity for learning and memory. To the best of our knowledge, this is the first report suggesting a role of GPR40 in PUFA-mediated m-BDNF synthesis.

Keywords

Citations : 4334

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • China National Knowledge Infrastructure (CNKI)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Share This Page
International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top