黑料网

ISSN: 2329-8863

Advances in Crop Science and Technology
黑料网

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 黑料网 Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

黑料网 Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Root System Architecture and its Reaction in Cereals under Water Stressed Environment

*Corresponding Author:

Copyright: © 2020  . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 
To read the full article Peer-reviewed Article PDF image

Abstract

Globally Climate change has increased the occurrence of extreme weather patterns these days, causing significant reductions in crop production, and hence threatening food security. Plant root traits is of great agronomic importance because it is a key determinant for plant anchoring and mechanical support, propagation, storage, and water and nutrient uptake, and as the major interface between the plant and various abiotic factors. A current challenge for crop improvement is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Evaluating the association root architectural traits under water deficit will provide the basis for breeding new germplasm with suitable root traits for the efficient acquisition of soil resources and adaptation to drought. We summarize root architectural traits relevant to crop cereal productivity, analysis root phenotyping approaches and describe their advantages, limitations and practical value for cereal breeding programs. In this review, I encapsulate current progress in the genetic diversity in cereal crops, Quantitative Trait Loci (QTLs) associated with RSA, and the importance and applications of recent discoveries associated with the beneficial root traits towards better RSA for enhanced drought tolerance and yield.

Keywords

Citations : 5759

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online Access to Research in the Environment (OARE)
  • Open J Gate
  • Academic Keys
  • JournalTOCs
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Scholarsteer
  • SWB online catalog
  • Publons
  • Euro Pub
Share This Page
International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top