黑料网

ISSN: 2155-952X

Journal of Biotechnology & Biomaterials
黑料网

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 黑料网 Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

黑料网 Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • J Biotechnol Biomater,
  • DOI: 10.4172/2155-952X.1000279

Saccharification and Bioethanol Fermentation of Carbohydrate-Extracted Microalgal Biomass by Genetically Identified Organisms

Agwa OK*, Nwosu IG and Abu GO
Department of Microbiology, University of Port Harcourt, Rivers State, Nigeria
*Corresponding Author : Agwa OK, Department of Microbiology, University of Port Harcourt, Rivers State, Nigeria, Tel: 07309890484, Email: obioma.agwa@uniport.edu.ng

Received Date: Dec 04, 2017 / Accepted Date: Jan 18, 2018 / Published Date: Jan 25, 2018

Abstract

Saccharification of biomass to fermentable sugar is a major constraint for bioethanol production due to high cost of enzyme production and complications associated with the removal of hearse acid, alkali and salts formed after neutralization. This led to the search for low cost enzyme and its combination with dilute acid to enhance biomass hydrolysis. In this study, the microalgal biomass was hydrolysed using amylase and cellulase enzymes produced by solid state and submerged fermentation processes. Saccharification of algal biomass was studied using dilute tetraoxosulphate (VI) acid, crude enzyme complex and a combination of both. The highest yield of reducing sugar of 0.63 mg/ml was obtained with the co-combination hydrolysis of acid and enzyme, followed by acid hydrolysis (0.41 mg/ml) while the least was found with enzyme hydrolysis (0.36 mg/ml). The hydrolysate of the algal pretreated biomass was used for bioethanol production by Saccharomyces cerevisiae and co-cultures of S. cerevisiae and Aspergillus niger. The highest ethanol yield of 0.33 mg/ml at a percentage of 10.82% v/v was obtained from hydrolysates pretreated with co-combination of dilute acid and crude enzyme complex. The result showed that crude enzyme can increase the yield of hydrolyzed microalgal biomass for bioethanol production.

Keywords: Crude enzyme; Fermentation; Hydrolysis; Microalgae; Saccharification

Citation: Agwa OK, Nwosu IG, Abu GO (2018) Saccharification and Bioethanol Fermentation of Carbohydrate-Extracted Microalgal Biomass by Genetically Identified Organisms. J Biotechnol Biomater 8: 279. Doi: 10.4172/2155-952X.1000279

Copyright: © 2018 Agwa OK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

International Conferences 2024-25
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top