黑料网

ISSN: 2157-2526

Journal of Bioterrorism & Biodefense
黑料网

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 黑料网 Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

黑料网 Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • J Bioterr Biodef 2022, Vol 13(4): 302
  • DOI: 10.4172/2157-2526.1000302

Self-Organizing Sensor Node Sensing and the Constrained Shortest Path Problem Alternative for Biodefense

William Shinde*
School of Engineering, Vanderbilt University, Nashiville, U.S.A
*Corresponding Author : William Shinde, School of Engineering, Vanderbilt University, Nashiville, U.S.A, Email: willshi@r.edu.cn

Received Date: Jul 04, 2022 / Published Date: Jul 30, 2022

Abstract

Numerous self-organizing systems can be found in nature that autonomously adapt to shifting circumstances without impairing the system's objectives. In order to conduct an energy-effective region sampling, we suggest a selforganizing sensor network that is modelled after actual systems. Using local data processing, mobile nodes in our network carry out certain rules. These principles give the nodes the ability to split the sampling duty so that they can self-organize to use less power overall and sample phenomena more accurately. The digital hormone-based model,which contains these regulations, offers a theoretical framework for analysing this group of systems. On cricket mote simulations, this model has been put into practise. Compared to a traditional model with fixed rate sampling, our findings show that the model is more efficient.

In transportation optimization, personnel scheduling, network routing, and other areas, the constrained shortest path (CSP) problem is frequently employed. As an NP-hard problem, it is still a matter of debate. The adaptive amoeba algorithm's fundamental mechanism is the foundation of the novel approach we provide in this paper. Two sections make up the suggested procedure. To resolve the shortest path problem in directed networks in the first section, we use the original amoeba approach. The Physarum algorithm and a rule with bio-inspired design.

Citation: Shinde W (2022) Self-Organizing Sensor Node Sensing and the Constrained Shortest Path Problem Alternative for Biodefense. J Bioterr Biodef, 13: 302. Doi: 10.4172/2157-2526.1000302

Copyright: © 2022 Shinde W. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

International Conferences 2024-25
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top