Review Article
The Role of Coffee in the Therapy of Parkinson's Disease
Andrew Tran1, Cecilia Yijun Zhang1 and Chuanhai Cao1-3*
1The USF-Health Byrd’s Alzheimer’s Center and Research Institute, Tampa, FL, USA
2The College of Pharmacy at University of South Florida, Tampa, FL, USA
3Department of Neurology at Morsani College of Medicine, Tampa, FL, USA
- Corresponding Author:
- Chuanhai Cao
Assistant Professor
College of Pharmacy University of South Florida
USF-Health Byrd Alzheimer’s Institut
,4001 E. Fletcher Ave. Tampa FL, USA 33613
Tel: +813-3960742
E-mail: ccao@health.usf.edu
Received date: October 14, 2015; Accepted date: December 29, 2015; Published date: December 30, 2015
Citation: Tran A, Zhang CY, Cao C (2015) The Role of Coffee in the Therapy of Parkinson’s Disease. J Alzheimers Dis Parkinsonism 5:203. doi: 10.4172/2161-0460.1000203
Copyright: © 2015 Tran A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Active compounds in coffee have been reported to possess therapeutic effects in treating Parkinson’s disease (PD). PD is a neurological degenerative disorder affecting millions of people around the world and to this day, there is no known cure or effective method to prevent or delay the disease progress. The most effective drug being used to treat symptoms of PD is L-3,4-dihydroxyphenyalanine (L-DOPA). However, chronic use of L-DOPA diminishes its effectiveness as well as inducing dyskinesia. Current studies have shown that coffee consumption enhances the effects of L-DOPA and has a preventative role in both the onset and progression of PD. Coffee also has been reported to increase the plasma levels of granulocyte colony-stimulating factors (G-CSF), a protein that also possesses neuroprotective functions. G-CSF may be used in combination treatments with L-DOPA and coffee to synergize their function for treating PD. The underlying processes are not fully understood as to how coffee interacts with both L-DOPA and G-CSF in PD models. This review attempts to provide a possible mechanism for these interactions. Understanding the metabolic interactions between coffee, L-DOPA, and G-CSF may shed light on new therapeutic treatments to treat PD.