Using Principle Component Analysis in Identifying Synoptic Patterns of Wet Periods in Central Iran
Received Date: Sep 21, 2015 / Accepted Date: Oct 06, 2015 / Published Date: Oct 16, 2015
Abstract
Atmosphere circulation patterns have an important role in appearance of natural events. For this purpose, in the present study in order to identify the atmosphere circulation patterns which cause humid periods, the principle components analysis method and cluster analysis were used. Therefore by emphasis on peripheral circulation approach, wet periods during a 30 years statistic period (1982-2011) in 6 synoptic stations in Kerman, Yazd and Isfahan province which have long term common statistic period were calculated using standard precipitation index. The findings of principle component analysis showed that by eight components it is possible to explain 94 percent of the variations in geo-potential height data. Therefore, the first component with 62.3 percent appearance shows the dominance of polar and Siberia high pressure in cold period of the year, and the remaining components show atmosphere instabilities which penetrate the region from Mediterranean sea, Black sea and Red sea. The results of cluster inspections show that there are two patterns with 28 percent frequency and 15 percent probability of precipitation in the region. Therefore, the circulation pattern of middle level of the atmosphere shows that by establishment of a deep trough at the east of Mediterranean sea and red sea and locating the east of trough on the researched area, and simultaneously a low pressure centre become dominant at the sea level on the region which cause precipitation event. This arrangement of circulation pattern causes Iran to exit from drought.
Keywords: Cluster analysis; Principle component analysis; Synoptic patterns; Wet periods
Citation: Fatemi M, Omidvar K, Beiglou KHB, Narangifard M (2015) Using Principle Component Analysis in Identifying Synoptic Patterns of Wet Periods in Central Iran. J Earth Sci Clim Change 6(9): 309. Doi: 10.4172/2157-7617.1000309
Copyright: © 2015 Fatemi M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
黑料网 Journals
Article Tools
Article Usage
- Total views: 11210
- [From(publication date): 11-2015 - Mar 09, 2025]
- Breakdown by view type
- HTML page views: 10474
- PDF downloads: 736