黑料网

ISSN: 2157-7625

Journal of Ecosystem & Ecography
黑料网

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 黑料网 Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

黑料网 Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Spatial Analysis of Greater Sage-grouse Habitat Use in Relation to Landscape Level Habitat Structure

Mark T Freese1, Steven L Petersen2*, Richard F Miller3, Andrew C Yost4 and W Douglas Robinson5

1Wildlife Biologist, Nevada Department of Wildlife, Valley Road, Reno, Nevada, USA.

2Department of Plant and Wildlife Sciences, Brigham Young University, WIDB, Provo Utah, USA.

3Department of Animal and Rangeland Sciences, Oregon State University, Withy combe Hall, Corvallis Oregon, USA.

4Oregon Department of Forestry, State Street, Salem, USA.

5Department of Fisheries and Wildlife, Oregon State University, Nash Hall, Corvallis, USA.

*Corresponding Author:
Steven Petersen
Department of Plant and Wildlife Sciences
Brigham Young University, 487 WIDB
Provo Utah 84602, USA
Tel: (801) 422-4885
E-mail: steven_petersen@byu.edu

Received Date: July 05, 2016; Accepted Date: July 29, 2016; Published Date: August 05, 2016

Citation:Freese MT, Petersen SL, Miller RF, Yost AC, Robinson WD (2016) Spatial Analysis of Greater Sage-grouse Habitat Use in Relation to Landscape Level Habitat Structure. J Ecosys Ecograph 6:205. doi:10.4172/2157-7625.1000205

Copyright: © 2016 Freese MT, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Greater sage-grouse (GSG; Centrocercus urophasianus) selectively utilize portions of sagebrush and sagebrush associated habitats within broad and heterogeneous landscapes. Until recently, sage-grouse research has generally focused on fine-scale vegetation structure and composition and less on landscape-scale habitat requirements. Insufficient information at broad scales limits a manager’s ability to interpret and predict habitat use patterns, assess habitat suitability, and target areas for conservation and ecological rehabilitation. We identified environmental attributes associated with GSG habitat use at broad spatial scales. In 2006, we captured 50 GSG, radio-collared each bird, and tracked each bird’s position within a 31,416 ha study area in central Oregon, USA. We monitored birds year-long between March 2006 and March 2008 across the study area. Each time a bird was located, we collected a coordinate position at the point where it was observed. We generated spatially explicit predictor variables in a Geographic Information System to quantify the association between landscape structure and GSG occurrence. Predictor variables included elevation, slope, aspect, curvature, solar radiation, landscape ruggedness, orientation, distance from roads, distance from leks, distance from mesic habitats, and cover type. We used spatial modeling (Maximum Entropy) to 1) develop predictive models of GSG seasonal resource use, 2) generate probability maps for visual assessment, and 3) characterize response curves associated with GSG habitat preference based on individual landscape predictor variables. Results indicate that during the breeding season GSG will use big sagebrush, low sagebrush or complexes of low and mountain big sagebrush cover types. During the summer season, GSG use low sagebrush, mountain big sagebrush, and mesic areas. Additionally, summer season use areas include higher elevation sites within or in close proximity to habitats that sustain succulent forbs throughout most of the growing season. Maps of modeled data identify spatially explicit areas of preferred habitat and predicted bird use patterns. This information can help managers identify and protect important GSG habitat across heterogeneous landscapes.

Keywords

Citations : 2854

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online Access to Research in the Environment (OARE)
  • Open J Gate
  • Genamics JournalSeek
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
Share This Page

International Conferences 2024-25
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top