黑料网

ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
黑料网

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ 黑料网 Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

黑料网 Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Citations : 7718

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page

Development of a novel liquid-inerted microwave pyrolysis system

Joint Event on 12th World Congress on Biofuels and Bioenergy & 13th Global Summit and Expo on Biomass and Bioenergy

Benjamin Shepherd and John P Robinson

University of Nottingham, UK

Posters & Accepted Abstracts: J Bioremediat Biodegrad

DOI:

Abstract
Pyrolysis is the thermochemical decomposition of biomass under inert conditions, into gas, oil and char. Microwavepyrolysis, which offers direct inherent heating advantages not provided by conventional heating, is an expanding area of research. However, concerns exist with current state-of-the-art of microwave-pyrolysis systems used by researchers, as they typically have low intensity microwave-fields, are arcing-prone and require a significant amount of inert gas. As such, currently there is limited energy mass-balance information available due to the nature of these microwave reactors, which is fundamentally needed to support the scalability potential of microwave-pyrolysis. In an effort to overcome the aforementioned issues, a solvent inerted microwave-pyrolysis process has been developed and is presented here, offering benefits over gas microwave-pyrolysis. These include: prevention of thermal-runaway as the solvent maintains the biomass between 300-500掳C due to increased thermal transfer, prevention of volatile secondary degradation reactions, provides heterogeneous heatingprofiles enabling larger samples to be processed. An inerting gas is not needed as volatiles are quenched directly into the solvent, yielding bio-oil, reducing gas capture requirements and lowering process unit-costs. This presentation will focus on the screening of nine solvents used to inert the pyrolysis of sycamore feedstock in a microwave-system, based on microwave transparency/absorbency, boiling points, cost, environmental safety. Preliminary findings suggested that energy requirements for pyrolysis are not significantly increased, selective depolymerisation of cellulose and hemicellulose is possible, pyrolysis liquid yields can be as high as 70% of the bulk mass loss from the sample, and results fall in line with mathematic models. This allows for potential of scale-up, and different pyrolysis liquid compositions to be compared to conventional and gas-inerted microwave-pyrolysis. Future research and development, including: establishing how the solvent choice affects phase separation, identification of key components in the oil and further processing scale-up, mass and energy balances and mathematical models will also be discussed in this presentation.
Biography

Benjamin Shepherd is a 2nd year PhD Researcher at the University of Nottingham working under the supervision of Dr. John Robinson and Dr. Liam Ball. After obtaining a MEng degree in Chemical Engineering in 2015 from the University of Nottingham, he decided to pursue research. His current research focuses on the development of a novel microwave pyrolysis system that employs superior temperature control using inert liquid instead of gas. He performs a combination of theoretical and empirical research in order to help underpin the process envelope for this new system.

E-mail: Benjamin.shepherd@nottingham.ac.uk

 

International Conferences 2024-25
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top