ºÚÁÏÍø

ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
ºÚÁÏÍø

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ ºÚÁÏÍø Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

ºÚÁÏÍø Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Citations : 7718

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page

Thermal characterization of vegetable tannin reinforced TPU-based bio-composites

International Conference on Sustainable Bioplastics

Huseyin Ata Karavana, Fatma Erdoan, Arife CandaÃ?Â? Adiguzel Zengin, Onur Yilmaz and Fatma Akpolat

Ege University, Turkey

Posters & Accepted Abstracts: J Bioremediat Biodegrad

DOI:

Abstract
The aim of this study was to investigate the use of vegetable tannin as a potential reinforcement material in polymer composites for the production of footwear sole material. For this purpose, the acorn cups and the waste of acorn obtained after the tannin extraction was used as the reinforcement material for thermoplastic polyurethane (TPU) based composites. Alkali treatments were applied for modifying the surface of acorn cups and pulps to increase the compatibility between the filler and polymer matrix. The preparation of the composites with different filler loadings (10, 20 and 30 wt%) was performed via hot melt extrusion. The effect of surface modification on the thermal and morphological characteristics of the biocomposites was investigated in terms of Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) analyses. The FT-IR results showed that the vegetable fillers were incorporated into the polyurethane matrix successfully and partial structural modifications were occurred as a result of the alkali treatments. Although the thermal resistance of composite materials at low temperatures was found slightly lower than the TPU, higher thermal resistance values were obtained at higher temperatures. Overall results showed that the homogenous dispersion of vegetable fillers within the polymer matrix was achieved successfully and the obtained bio-composite materials were found to be a good candidate to use as bio based footwear sole material.
Biography

Email: atakaravana@gmail.com

International Conferences 2024-25
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top