ºÚÁÏÍø

ISSN: 2157-7617

Journal of Earth Science & Climatic Change
ºÚÁÏÍø

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ ºÚÁÏÍø Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

ºÚÁÏÍø Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Citations : 5125

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online Access to Research in the Environment (OARE)
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • Centre for Agriculture and Biosciences International (CABI)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Proquest Summons
  • SWB online catalog
  • Publons
  • Euro Pub
  • ICMJE
Share This Page

The future of subtropical rainfall

4th World Conference on CLIMATE CHANGE

Jie He

Princeton University, USA

ScientificTracks Abstracts: J Earth Sci Clim Change

DOI:

Abstract
The subtropics encompass many of the world�s driest regions and climate models robustly predict a large-scale decline in subtropical precipitation from anthropogenic forcing. This projection has become popularly related to the dry-get-drier paradigm. The expectation that climate change will generally exacerbate the rainfall deficiency of the subtropical regions has excited great concerns. On the other hand, some studies have attributed the subtropical precipitation decline to the pole ward expansion of the Hadley cell. In this talk, I will show that neither the dry-get-drier nor pole ward expansion mechanism is relevant to the large-scale subtropical precipitation decline. It is found that the subtropical precipitation decline forms primarily from the fast adjustment to CO2 forcing in which neither of the two proposed mechanisms exists. Permitting the increase in moisture and the Hadley cell expansion does not substantially change the characteristics of the large-scale subtropical precipitation decline. This precipitation change should be interpreted as a response to the land-sea warming contrast, direct radiative forcing of CO2 and in certain regions, pattern of SST changes. In addition, a careful examination of the spatial patterns of the projected precipitation change shows that the subtropical precipitation decline is primarily located over ocean. Over subtropical land regions, the precipitation decline is muted or even reversed by the land-sea warming contrast.
Biography

Jie He has studied changes in hydro-climate and atmospheric circulation from anthropogenic forcing. His research focuses on understanding the physical mechanisms of the climate system using model simulations. His presentation is about the subtropical precipitation has recently been published in Nature Climate Change. He has also worked on understanding and reducing uncertainties in climate projections on both global and regional scales. One of his current research projects involves the dynamics of tropical air-sea interactions. The goal is to quantify various coupling feedback processes in order to build a simple and practical framework for understanding model biases and future changes in air-sea interaction. He has also started working on the connection between transient climate sensitivity and regional ocean heat uptake.

Relevant Topics
International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top